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1. Introduction

Let T = k[[x1, . . . , xn]], S = Gm(T ) = k[x1, . . . , xn] and M be a T -module. In [9], given the hypothesis
that Gm(M) has a pure resolution, Puthenpurakal constructs a pure S-resolution of Gm(M) from a
T -resolution of M . Moreover, if M is Cohen-Macaulay, he also gives a characterization for Gm(M) to
have a pure resolution. This article is motivated by questions on the generalization of these results to
modules over Noetherian local rings.
In this paper, we study the properties of modules with finite projective dimension over a Noetherian
local ring R, whose associated graded modules have pure resolutions. In [11], Sammartano proved that
the Betti numbers of M can be obtained from those of Gm(M) by negative consecutive cancellations.
In particular, if Gm(M) has a pure resolution, the Betti numbers of Gm(M) are equal to the Betti
numbers of M . Given a free resolution F of an R-module M , we construct a complex F ∗ of free
modules over the associated graded ring A of R. This construction is crucial in proving the major
results of this article. In particular, we prove that Gm(M) has a pure A-resolution if and only if F ∗

is a resolution of Gm(M). As a consequence, we obtain that the existence of an R-module M with
certain properties implies that R is Cohen-Macaulay (in the same vein as Theorem 4.9 of [1]). We
also prove a local version of Herzog and Kühl’s celebrated result ([5]), which was further generalized
in [2] and [1].
This paper is organized as follows. In section 2, we introduce the notation, definitions, basic observa-
tions, and previous results that are needed in the rest of the article.
Section 3 is devoted to the study of properties of N∗ (see Definition 2.8(c)), where N is the submodule
of a free R-module F . The key result of this section involves a characterization of N∗ being an
equigenerated graded A-module (Proposition 3.6).
Section 4 provides the culmination of the theory introduced in sections 2 and 3. We construct a
complex F∗

• from a resolution F• of M and use Proposition 3.6 to prove that it is a free resolution
of Gm(M) under certain conditions (Theorem 4.5). We also give sufficient conditions for R to be
Cohen-Macaulay (Theorem 4.8) and prove the local version of Herzog and Kühl’s result (Theorem
4.12) promised earlier.

2. Preliminaries

2.1. Graded Betti Numbers and Pure Resolutions.

Definition 2.1. a) Let R be a ring. We say that R is graded if there exists a decomposition (as
abelian groups) R =

⊕
i∈ZRi such that RiRj ⊂ Ri+j for all i, j ∈ Z.

b) A graded ring R is said to be nonnegatively graded if Ri = 0 for all i < 0.
c) A nonnegatively graded ring R is said to be standard graded if R = R0[R1] as a R0-algebra, where
R0 = k, a field.

d) Let M be a module over a graded ring R. We say that M is a graded R-module if there exists a
decomposition (as abelian groups) M =

⊕
i∈ZMi such that RiMj ⊂Mi+j for all i, j ∈ Z.

e) The n-twist of a graded moduleM , denoted byM(n), is the graded module defined asM(n)i =Mn+i

for all i ∈ Z.
f) Let M,N be graded R-modules. Then an R-linear map ϕ :M → N called a graded map of degree
n if ϕ(Mi) ⊂ Nn+i for all i ∈ Z. By convention, the term ‘graded map’ means a graded map of
degree zero.
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Definition 2.2. Let M be a graded R-module and

F• : · · · −→ Fn
ϕn−→ Fn−1

ϕn−1−−−→ · · · ϕ1−→ F0
ϕ0−→M −→ 0

be a free resolution of M .

a) If each ϕi is a graded map of degree zero, then we say that F• is a graded free resolution of M .
b) We say that the resolution F• is minimal if ϕi(Fi) ⊂ mFi−1 for all i ≥ 1.
c) If F• is a graded minimal free resolution of M , then the module ΩR

i (M) = ker(ϕi−1) is a graded
R-module, called the ith syzygy module of M with respect to the resolution F•. The number of
minimal generators of ΩR

i (M) in degree j is denoted by βi,j(M), and is called the (i, j)th graded

Betti number of M . The number βi(M) =
∑

j βi,j(M) is called the total ith Betti number of M ,

and it is the number of elements in a minimal generating set of Ωi(M).
d) The series PR

M (z) =
∑

i≥0 βi(M)zi (or simply PM (z)) is called as the Poincare series of M , and

the series PR
M (s, t) =

∑
i,j βi,j(M)sitj (or simply PM (s, t)) is called as the graded Poincare series

of M .
e) The projective dimension of M , denoted by pdimR(M) or simply by pdim(M), is the length of a

minimal graded free resolution of M .
f) The regularity of M as

reg(M) = sup{j − i | βi,j(M) ̸= 0}.
g) The resolution F• is said to be pure if for every i, βi,j(M) ̸= 0 for at most one j. A module with

a pure resolution is called as a pure module.
h) A pure resolution F• of a module M generated in degree 0 is said to be linear if βi,j ̸= 0 implies

j = i.
i) A pure R-module M is said to be of type

1) δ = (δ0, δ1, δ2, . . .) if pdim(M) = ∞ and βi,δi(M) ̸= 0 for all i ≥ 0.
2) δ = (δ0, δ1, . . . , δp,∞,∞, . . .) if pdim(M) = p and βi,δi(M) ̸= 0 for 0 ≤ i ≤ p.

Definition 2.3. Let M =
⊕

n∈ZMn be a finitely generated graded module over a k-algebra R. Then
the function HM : Z → Z, given by HM (n) = dimk(Mn) is called as Hilbert function of M , and the
series HM (z) =

∑
n∈ZHM (n)zn is called as the Hilbert series of M .

Remark 2.4. It is well known that (e.g., see [?, Section 4.1] ) if M is a finitely generated R-module,
then

a) There exists a polynomial P (x) ∈ Q[x] such that HM (n) = P (n) for n≫ 0.
b) There exists f(z) ∈ Z[z, z−1] such that HM (z) = f(z)/(1− z)d, where d = dim(M) and f(1) ̸= 0.

Definition 2.5. Let M be a graded R-module of dimension d and HM (z) = f(z)/(1− z)d. Then the
number f(1) is called as the multiplicity of M , and we denote it by e(M).

2.2. Cohen-Macaulay Defect.

Definition 2.6. Let A be a standard graded k-algebra, and M be a finitely generated graded A-module.
The Cohen-Macaulay defect of M , denoted cmd(M), is defined as cmd(M) = dim(M)− depth(M).

We record some observations and known results related to Cohen-Macaulay defect in the following
remark.

Remark 2.7. Let A and M be as above.

a) M is Cohen-Macaulay if and only if cmd(M) = 0.
b) If pdimA(M) <∞, then cmd(M) = cmd(A) if and only if codim(M) = pdimA(M).
c) ([1, Proposition 3.7]) If M is pure, then codim(M) ≤ pdimA(M).

Moreover, if pdimA(M) <∞, then cmd(A) ≤ cmd(M).

d) ([1, Theorem 3.9]) Let M be a pure A-module of type δ = (δ0, . . . , δp), and bi = (−1)i−1
∏

j ̸=i
δj−δ0
δj−δi

for i = 1, . . . , p. Then cmd(M) = cmd(A) if and only if βi = biβ0 for i = 1, . . . , p.
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Definition 2.6, and the observations (a) and (b) in the Remark 2.7 are also valid for finitely generated
modules over a Noetherian local ring. In this case, results analogous to Remark 2.7(c) and (d) are
also true, as proved in Theorems 4.8 and 4.11.

2.3. Associated Graded Rings and Modules.

Definition 2.8. Let (R,m, k) be a Noetherian local ring, and M be a finitely generated R-module.

a) Then the ring

A := Gm(R) =
⊕
i≥0

mi/mi+1

is called the associated graded ring of R with respect to m, and the A module

Gm(M) =
⊕
i≥0

miM/mi+1M

is called the associated graded module of M with respect to m.
b) Given any nonzero element x ∈M , define ν(x) = min{i | x ∈ miM \mi+1M}.

If ν(x) = i, we define an element of degree i in Gm(M) naturally associated to x as follows:
define x∗ = x+mi+1M ∈ miM/mi+1M ⊂ Gm(M).

c) Given a nonzero submodule N of M , we define N∗ = ⟨x∗ ∈ Gm(M) | x ∈ N⟩.
Furthermore, we define order of N as ν(N) = min{ν(x) | x ∈ N \ {0}}.

d) Let ϕ : Rm → Rn be a non-zero R-linear map. Considering ϕ as a matrix in the free module
Rmn, we define the initial form of ϕ, to be the corresponding matrix ϕ∗ ∈ Amn. In other words, if
ϕ = (aij) and ν(ϕ) = s, then ϕ∗ = (aij +ms+1).

Remark 2.9. Using the representation in the Definition 2.8 (d), observe that

a) ϕ∗ : Gm(R
m) → Gm(R

n) is a graded map of degree s.
Notation: We also use ϕ∗ to denote the induced map of degree zero from Gm(R

m)(−s − j) to
Gm(R

n)(−j) for all j ∈ Z.
b) If ψ : Rk → Rm is a non-zero R-linear map such that ϕ ◦ ψ = 0, then ϕ∗ ◦ ψ∗ = 0.

Remark 2.10. Let M be an R-module generated by u1, . . . , ul and F be a free R-module with basis
{w1, . . . , wl}. Then the map ϕ0 : F → M be defined as ϕ0(wi) = ui induces a natural A-linear onto
map ϵ : Al → Gm(M) defined as ϵ(w∗

i ) = u∗i .
Furthermore, if {u1, . . . , ul} is a minimal generating set of M , then by Nakayama lemma, ui ̸∈ mM .
The A-module Gm(M) is minimally generated by {u∗1, u∗2, . . . , u∗l } ⊂M/mM . In particular, Gm(M) is
generated in degree zero.

Lemma 2.11. Let N be a submodule of a free R-module F , and M = F/N . Then, N∗ is the kernel
of the natural map ϵ : Gm(F ) → Gm(M).

Proof. Observe that (Gm(M))i ≃ (miF +N)/(mi+1F +N). Let x ∈ N , and ν(x) = s in F . Then,
x∗ = x+ms+1F and ϵ(x∗) = x+ms+1F +N = 0. Hence, N∗ ⊂ ker(ϵ).
Let x + ms+1F ∈ ker(ϵ) \ {0}. Then, x ∈ ms+1F +N . Let x = y + z, where y ∈ ms+1F and z ∈ N .
Thus, z ∈ msF \ms+1F and x∗ = z∗. Hence, ker(ϵ) ⊂ N∗. □

Question 2.12. Let N be a submodule of M . Suppose {v1, . . . , vk} is a minimal generating set of N .
Then ⟨v∗1, . . . , v∗k⟩ ⊂ N∗. When does the equality hold?

The following example shows that in general N∗ ̸⊂ ⟨v∗1, . . . , v∗k⟩.

Example 2.13. Let

R = k[[X,Y, Z]]/⟨XZ − Y 3, Y Z −X4, Z2 −X3Y 2⟩.
Then

A = Gm(R) ≃ k[x, y, z]/⟨xz, yz, z2, y4⟩.
Here, for N = ⟨X⟩, we have N∗ = ⟨x, y3⟩. So, N∗ ̸= ⟨X∗⟩.
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Definition 2.14. A subset {v1, . . . , vr} of an R-module K is said to be a standard basis of K if
{v∗1, . . . , v∗r} = N∗.
A standard basis of N is said to be minimal if none of its proper subsets is a standard basis of N.

Remark 2.15. Every standard basis of N forms a generating set of N (cf. [7, Proposition 2.1]).

3. Submodule of a Free Module and an Induced Filtration

Lemma 3.1. Let N be a submodule of F . Let F = {Ni = miF ∩ N}i∈Z, and GF (N) =
⊕

i≥0(N ∩
miF )/(N ∩mi+1F ). Then we have N∗ ≃ GF (N).

Proof. Since mi+1F ∩N = mi+1F ∩ (N ∩miF ), we have the natural isomorphism of R-modules

(miF ∩N)/(mi+1F ∩N) ≃ (miF ∩N +mi+1F )/mi+1F

for each i ≥ 0. The above isomorphism, followed by the natural inclusion (miF ∩N+mi+1F )/mi+1F ⊂
Gm(M) is an additive function given by x+mi+1F ∩N 7→ x+mi+1F . This induces an additive function
η : GF (N) → Gm(F ) defined as

η

∑
i≥0

xi + (mi+1F ∩N)

 =
∑
i≥0

xi +mi+1F

where xi +mi+1F ∩N ∈ (GF (N))i. We now prove that
(a) η is A-linear, (b) η is injective, (c) Im(η) = N∗, which proves the lemma.
Let a∗ ∈ A be of degree j, and x̄ = x+mi+1F∩N ∈ GF (N) be nonzero. Then a∗x̄ = ax+mi+j+1F∩N .
It is clear that η(a∗x̄) = a∗η(x̄). This fact, together with the additivity of η, shows that η is A-linear.
Let x+N∩mi+1F ∈ GF (N) be nonzero. Then x ̸∈ mi+1F , and hence η(x+N∩mi+1F ) = x+mi+1F ̸=
0. Therefore, that η is injective.
Consider x ∈ N and suppose that ν(x) = i, i.e., x ∈ miF \ mi+1F . Then x∗ = x + mi+1F =
η(x+N ∩mi+1F ). Therefore, N∗ ⊂ Im(η).
To see the other inclusion, let x+mi+iF ∈ Im(η) be a nonzero homogeneous element. Then x+mi+1F =
η(y + mi+1F ∩ N) for some y ∈ miF ∩ N . Since x + mi+1F is nonzero, we have ν(y) = i. So,
y∗ = y +mi+1F = x+mi+1F . Hence, Im(η) ⊂ N∗. □

Definition 3.2. A Z-graded finitely generated module M is said to be equigenerated if there exists
n ∈ Z such that M = ⟨v1, . . . , vr⟩ with deg(vi) = n for all i.

Lemma 3.3. Let N be a submodule of a finite rank free R-module F with ν(N) = s. Let F and
GF (N) be as in Lemma 3.1. If GF (N) is equigenerated, then N ∩miF = mi−sN for all i ≥ s.

Proof. Since N∗ = ⟨v∗ | v ∈ N⟩, and ν(vi) ≥ s for all i, we see that ν(v) ≥ s for all v ∈ N \ {0}.
Moreover, by hypothesis, ν(vi) = s for some i. Hence, by Lemma 3.1, since GF (N) ≃ N∗, there is a
minimal generator of GF (N) in degree s. Thus, by hypothesis, it follows that GF (N) is generated in
degree s. So, we have Ni = N for i ≤ s and

Ns+j

Ns+j+1
= mj Ns

Ns+1
⇒ Ns+j = mjNs +Ns+j+1 = mjN +Ns+j+1,

for j ≥ 1. By the Artin-Rees lemma, there exists j0 such that Ns+j+1 = mNs+j for all j ≥ j0. For
j ≥ j0, Ns+j = mjN +Ns+j+1 = mjN +mNs+j . By Nakayama Lemma, Ns+j = mjN for j ≥ j0.
We show by descending induction that Ns+j = mjN for all j ≤ j0. This is true for j = j0 by the
previous argument. Assume Ns+j+1 = mj+1N for some j ≤ j0 − 1. Then,

mj+1N ⊂ mNs+j ⊂ Ns+j+1 = mj+1N.

Hence, Ns+j+1 = mNs+j and Ns+j = mjN + mNs+j . By Nakayama Lemma, Ns+j = mjN for
j ≤ j0 − 1. □

The converse of the above result is true. In fact, we prove a stronger statement.



ASSOCIATED GRADED MODULES OVER NOETHERIAN LOCAL RINGS 5

Lemma 3.4. Let (R,m, k) be a Noetherian local ring and N be a submodule of a free module F . Let
{v1, . . . , vk} be a minimal generating set of N with ν(vj) ≥ s for all j. Suppose that N ∩miF = mi−sN
for some i > s, then no minimal generator of N∗ has degree i, and ν(vj) < i for all j.

Proof. We show that (N∗)i ⊂ nN∗. Note that (N∗)i = (miF ∩N)/(mi+1F ∩N) = mi−sN/(mi+1F ∩N).

Let y ∈ (N∗)i. Then y = x + mi+1F ∩ N for some x ∈ mi−sN . So, x =
k∑

j=1
ajvj , where aj ∈ mi−s.

Therefore,

y = x+mi+1F ∩N =
k∑

j=1

(aj +mi−s+1)(vj + (ms+1F ∩N)) ∈ nN∗.

This completes the proof. □

The special case of i = s+ 1 in the previous lemma is interesting, which we record in the following:

Lemma 3.5. Let N be a nonzero submodule of a finite rank free R-module F , and let {v1, . . . , vk}
be a minimal generating set of N with ν(vi) ≥ s for all i. If N ∩ ms+1F = mN , then ν(vi) = s for
all i, and {v∗1, . . . , v∗k} is a part of a minimal generating set of N∗, and N∗ does not have a minimal
generator in degree s+ 1.
Furthermore, if µ(N∗) = k, then {v1, . . . , vk} forms a standard basis for N .

Proof. Since no minimal generator of N can be in mN , the condition N ∩ms+1F = mN implies that
ν(vi) = s for all i.
Let n denote the homogeneous maximal ideal of A. Suppose α1, . . . , αk ∈ A are such that

∑
i αiv

∗
i ∈

nN∗. It suffices to show that αi ∈ n for all i. If αj ∈ n for some j, then αjv
∗
j ∈ nN∗ and

∑
i ̸=j αiv

∗
i ∈

nN∗. So, suppose that αi ̸∈ n for all i. Hence, for each i, we have αi =
∑

j ai,j+mj+1 with ai,0 ∈ R\m.

Then, from
∑

i

(∑
j ai,j +mj+1

)
v∗i ∈ nN∗ we get

∑
i(ai,0 +m)v∗i ∈ nN∗.

Therefore,
∑

i ai,0vi ∈ N ∩ ms+1F = mN . Since {v1, . . . , vk} is a minimal generating set of N , we
get that ai,0 ∈ m for all i, which is a contradiction. Hence, we must have αi ∈ n for all i. Hence,
{v∗1, . . . , v∗k} can be extended to a minimal generating set of N∗. This completes the proof of the first
part.
Moreover, if µ(N∗) = k, then we see that {v∗1, . . . , v∗k} is a minimal generating set for N∗, i.e.,
{v1, . . . , vk} is a standard basis of N . □

Our goal is to study when Gm(M) has a pure resolution. Lemma 3.1 tells us that GF (N) must be
equigenerated for Gm(M) to have a pure resolution. We study this condition further in the next
proposition. In particular, we get some positive answers to Question 2.12.

Proposition 3.6. Let (R,m, k) be a Noetherian local ring, A = Gm(R), and M be a finitely generated
R-module. Consider the exact sequence 0 → N −→ F −→ M → 0, where F is free R-module, and
ν(N) = s. Suppose {v1, . . . , vk} is a minimal generating set of N . Let F and GF (N) be as in Lemma
3.1. Then the following statements are equivalent:
(i) GF (N) is equigenerated.
(ii) GF (N) ≃ Gm(N)(−s).
(iii) N ∩miF = mi−sN for all i ≥ s.
(iv) N ∩ms+1F = mN and µ(N∗) = k.
(v) The set {v1, . . . , vk} is a standard basis of N , and ν(vi) = s for all 1 ≤ i ≤ k.

Proof.
(i)⇒(iii): This implication is the content of Lemma 3.3.
(iii)⇒(ii): We have

(GF (N))i = (N ∩miF )/(N ∩mi+1F ) and (Gm(N)(−s))i = mi−sN/mi−s+iN.
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Since N ⊂ msF \ ms+1F , (GF (N))i = 0 for i < s. Also, since Gm(N) is generated in degree zero,
(Gm(N)(−s))i = 0 for i < s. Now, by (iii), for every i ≥ s, the degree i components of GF (N) and
Gm(N)(−s) are equal, which proves (ii).
(ii)⇒(i): This implication follows, since Gm(N) is generated in degree 0.
(iii) ⇒ (iv): Clearly, N∩ms+1F = mN . Now, note that µ(Gm(N)(−s)) = k. Hence, by the implication
(iii) ⇒ (ii), we get µ(N∗) = k.
(iv) ⇒ (v): This implication is the content of Lemma 3.5.
(v) ⇒ (i): Since {v∗1, . . . , v∗k} is a generating set of GF (N), with deg(v∗j ) = s for all 1 ≤ j ≤ k, GF (N)
is equigenerated. □

Example 2.13 shows that even if R is Cohen-Macaulay and all entries in the presentation matrix of M
have the same order, the associated graded module Gm(M) need not have a pure first syzygy module.
This shows that in statement (v) of the above theorem, the condition {v1, . . . , vk} is a standard basis
is necessary.

4. Free Resolutions over Associated Graded Rings

Lemma 4.1. Let the notation be as in Remark 2.10, with ϕ0 mapping minimally onto M . Suppose
N = ker(ϕ0), and F1 is a free R-module such that ϕ1 : F1 → F0 maps minimally onto N . Then

a) ϵ is surjective, and ΩA
1 (Gm(M)) ≃ ker(ϵ). Moreover, ϵ ◦ ϕ∗1 = 0.

b) If ΩA
1 (Gm(M)) is equigenerated in degree s, then

i) Every column of ϕ1 has order s.
ii) ϕ∗1 : Gm(F1)(−s) → Gm(F0) maps minimally onto ker(ϵ).
iii) Im(ϕ∗1) = ker(ϵ) ≃ Gm(N)(−s).
In particular, Gm(F1)(−s)

ϕ∗
1−→ Gm(F0)

ϵ−→ Gm(M) → 0 is exact.

Proof. a) The map ϵ is surjective as {u∗1, u∗2, . . . , u∗l } is a generating set of Gm(M). We also see that

ΩA
1 (Gm(M)) ≃ ker(ϵ) since it is a minimal generating set.

Let ϕ1 = (aij) and ν(ϕ1) = s. Then ϕ∗1 = (aij +ms+1). Since ϕ0 ◦ ϕ1 = 0, we have
∑l

i=1 aijui = 0 for
all j. Therefore,

l∑
i=1

(aij +ms+1)u∗i =
l∑

i=1

(aij +ms+1)(ui +mM) =
l∑

i=1

(aijui +ms+1M) = 0

for all j. This proves that ϵ ◦ ϕ∗1 = 0.
b) We know that N is generated minimally by the columns of ϕ1, say v1, . . . , vl. By Lemma 2.11, we
have N∗ = ker(ϵ) ≃ ΩA

1 (Gm(M)). By Lemma 3.1, GF (N) ≃ N∗. Since ΩA
1 (Gm(M)) is equigenerated

in degree s, by (i) ⇒ (v) of Proposition 3.6, we get that all vi have the same order s, and Im(ϕ∗i ) =
{v∗1, . . . , v∗l } = N∗. The isomorphism ker(ϵ) ≃ Gm(N)(−s) follows from (i) ⇒ (ii) of Proposition 3.6.
Finally, since µ(N) = µ(Gm(N)(−s)), we get that ϕ∗1 maps minimally onto ker(ϵ), which completes
the proof. □

Remark 4.2. Let

F• : · · · → Fp
ϕp−→ · · · → F1

ϕ1−→ F0 → 0

be a free resolution of an R-module M , where ν(ϕi) = si for i ≥ 1. Then we have a natural associated
graded complex defined as follows:

F∗
• : · · · → Gm(Fp)(−δp)

ϕ∗
p−→ · · · → Gm(F1)(−δ1)

ϕ∗
1−→ Gm(F0) → 0,

where, δi =
∑i

j=1 sj .

Question 4.3. Let M̃ = coker(ϕ∗1).

a) Is F∗
• acyclic?

b) Is M̃ ≃ Gm(M)?
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Remark 4.4. a) If F∗
• is acyclic, then M̃ has a pure resolution of type (δ0 = 0, δ1, δ2, . . .) with

βAi,δi = βRi (M).

b) With ϵ as in Remark 2.10, from Lemma 4.1, we have ϵ ◦ ϕ1 = 0. Therefore, M̃ maps onto Gm(M),

and we have a short exact sequence 0 → K → M̃ → Gm(M) → 0. Note that if K = 0, then
Question 4.3 (b) has a positive answer.

In the next theorem we see a sufficient condition for exactness of F∗
•.

Theorem 4.5. Let M be a finitely generated R-module such that Gm(M) has a pure resolution over
A. Then with notation as in the previous remark, F∗

• is a minimal free resolution of Gm(M).

Proof. Denote ϵ as ϕ∗0, let δ0 = 0, K0 = Gm(M), and Ni = Im(ϕi), Ki+1 = ker(ϕ∗i ), for all i ≥ 0. By
induction on i, for all i ≥ 1 we prove the following
Claim:

(i) 0 → Ki → Gm(Fi−1)(−δi−1)
ϕ∗
i−1−−−→ Ki−1 → 0 is exact,

(ii) Ki ≃ Gm(Ni)(−δi) ≃ Ωi(Gm(M)),
(iii) ϕ∗i maps minimally onto Ki.

Proof of claim. Since ΩA
1 (Gm(M)) is equigenerated, the statements (i)-(iii) hold for i = 1 by Lemma

4.1 (b). Inductively assume that the statements (i)-(iii) hold for some i ≥ 1.
Then ϕ∗i maps minimally onto Ki. Since Ki+1 = ker(ϕ∗i ), we get that the sequence 0 → Ki+1 →
Gm(Fi)(−δi)

ϕ∗
i−→ Ki → 0 is exact. Furthermore, the facts that Gm(M) has a pure resolution and

Ki ≃ Ωi(Gm(M)) imply that Ki+1 ≃ Ωi+1(Gm(M)), and hence is equigenerated.

Now, consider the short exact sequence 0 → Ni+1 → Fi
ϕi−→ Ni → 0. Since Ki ≃ Gm(Ni)(−δi),

from the exact sequence above we have Ki+1 = Ω1(Gm(Ni))(−δi). Since Ki+1 is equigenerated, so is
Ω1(Gm(Ni)) ≃ Ki+1(δi).
Hence, by Lemma 4.1, we get that Ki+1(δi) ≃ Gm(Ni+1)(−si+1), i.e., Ki+1 ≃ Gm(Ni+1)(−δi+1).
Moreover, ϕ∗i+1 : Gm(Fi+1)(−si+1) → Gm(Fi) maps minimally onto Ki+1(δi), or equivalently, ϕ∗i+1 :
Gm(Fi+1)(−δi+1) → Gm(Fi)(−δi) maps minimally onto Ki+1. Hence, the claim is proved.
By the claim we have Im(ϕ∗i ) = ker(ϕ∗i−1) for all i ≥ 1, i.e., F∗

• is exact. Moreover, since ϕ∗i maps
minimally onto Ki for all i ≥ 0, we get that F∗

• is a minimal free resolution of Gm(M). □

Corollary 4.6. Let (R,m, k) be a Noetherian local ring, and M be a finitely generated R-module.
Consider a minimal free resolution

F• : · · · → Fp
ϕp−→ · · · → F1

ϕ1−→ F0 → 0

of M , and let Ωi = ΩR
i (M), si = ν(ϕi), δ0 = 0, and δi =

∑
j≤i sj for all i ≥ 1. Then the following are

equivalent

i) Gm(M) has a pure resolution.
ii) For every i ≥ 1 we have Ωi ∩mjFi−1 = mj−siΩi for all j > si.
iii) For every i ≥ 1 we have Ωi ∩mjFi−1 = mj−siΩi for all si < j ≤ regA(Gm(M)) + i− δi−1.

If this happens, then Gm(M) is pure of type δ = (0, δ1, δ2, . . .).

Proof. (i) ⇒ (ii): Suppose that Gm(M) has a pure resolution. Then by Theorem 4.5, F∗
• is a minimal

free resolution of Gm(M), and ΩA
i (Gm(M)) ≃ Gm(Ωi)(−δi), which is equigenerated. Now, by Lemma

3.3, Ωi ∩mjFi−1 = mj−siΩi for all j ≥ si.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i): We induce on i to prove that Ωi(Gm(M)) is generated in degree δi. If Ω1 ̸= 0, then note
that by Lemma 3.4, the hypothesis implies that ΩA

1 (Gm(M)) has no minimal generator in degree j for
all s1 < j ≤ regA(Gm(M))+1. By definition of regularity, every minimal generator of Ω1(Gm(M)) has
degree at most regA(Gm(M))+ 1. Hence, every minimal generator of ΩA

1 (Gm(M)) has degree s1 = δ1,
which proves the result for i = 1.
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Inductively assume that the result is true for some i ≥ 1. Then ΩA
i (Gm(M)) is generated in degree δi.

If Ωi+1 ̸= 0, then by Lemma 3.4, the hypothesis implies that ΩA
i+1(Gm(M)) has no minimal generator

in degree j for all δi+1 = si+1 + δi < j ≤ regA(Gm(M)) + (i + 1). By definition of regularity, every
minimal generator of Ωi+1(Gm(M)) has degree at most regA(Gm(M))+ (i+1). Hence, every minimal
generator of ΩA

i+1(Gm(M)) has degree δi+1 Therefore, by induction, it follows that Gm(M) has pure
resolution. □

Corollary 4.7. If A is Koszul, then PR
k (z) is rational.

Proof. If A is Koszul, then k has a linear A-resolution. Hence, by [8, Remark 7.4.4], we have PA
k (z) =

1/HA(−z). Now, by Theorem 4.5 we have PR
k (z) = PA

k (z). Hence PR
k (z) = 1/HA(−z), proving the

rationality of PR
k (z). □

Theorem 4.8. LetM be an R-module with pdimR(M) <∞ such that Gm(M) has a pure A-resolution.
Let

F• : 0 → Fp
ϕp−→ Fp−1 → · · · → F1

ϕ1−→ F0 → 0

be a minimal resolution of M with βi = rank(Fi). Then

a) codim(M) ≤ pdim(M).
b) If M is Cohen-Macaulay, then R is Cohen-Macaulay.

Proof. Since Gm(M) has a pure resolution, by Theorem 4.5, F∗
• is a minimal free resolution of Gm(M)

of type (0, δ1, . . . , δp,∞,∞, . . .). In particular, pdimA(Gm(M)) = pdimR(M) = p. By [1, Proposition
3.7], we have codim(Gm(M)) ≤ pdim(Gm(M)). Hence, codim(M) ≤ pdim(M). This proves (a).
Now, let M be Cohen-Macaulay. By the Auslander-Buchsbaum formula and (a), we have depth(R) =
depth(M) + pdimR(M) = dim(M) + pdimR(M) ≥ dim(M) + codim(M) = dim(R). So, R is Cohen-
Macaulay. □

To prove the next major result, we require the following lemma.

Lemma 4.9. Let R be a Noetherian local ring and M be a Cohen-Macaulay R-module. If N is a
nonzero submodule of M , then dim(N) = dim(M).

Proof. Note that since M is Cohen-Macaulay, dim(M) = dim(R/p) for every p ∈ Ass(M). Also,
Ass(N) ̸= ∅, since N ̸= 0. Since Ass(N) ⊂ Ass(M), and dim(N) = max{dim(R/p) | p ∈ Ass(N)}, we
see that dim(N) = dim(M). □

Definition 4.10. Let R be a Noetherian local ring and M be a finitely generated R-module. Then the
Cohen-Macaulay defect of M is defined as cmd(M) = dim(M)− depth(M).

Note that cmd(M) = 0 if and only if M is Cohen-Macaulay.

Theorem 4.11. Let M be an R-module such that pdimR(M) = p < ∞ and Gm(M) has a pure
resolution. Let

F• : 0 → Fp
ϕp−→ Fp−1 → · · · → F1

ϕ1−→ F0 → 0

be a minimal resolution of M with βi = rank(Fi). Then the following are equivalent:

i) cmd(M) = cmd(R).

ii) βi = biβ0 for i = 1, . . . , p, where bi = (−1)i−1
∏

j ̸=i
δj

δj−δi
.

iii) cmd(Gm(M)) = cmd(A).

Furthermore, if any of the above equivalent statements hold, then e(M) = e(R)
β0
p!

∏p
i=1 δi.

Proof. Since Gm(M) has a pure resolution, by Theorem 4.5, F∗
• is a minimal pure resolution of Gm(M)

of type (0, δ1, . . . , δp,∞,∞, . . .) with βAi (Gm(M)) = βi. Thus, from [1, Theorem 3.9], we get the
equivalence of (ii) and (iii).
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(i) ⇒ (iii): Recall that dim(M) = dim(Gm(M)) (e.g., see [3, Theorem 4.5.6]). By the Auslander-
Buchsbaum formula,

dim(Gm(M))− depth(Gm(M)) = dim(M)− (depth(A)− p)

= dim(M)− depth(A) + depth(R)− depth(M)

= dim(R)− depth(A)

= dim(A)− depth(A),

where the third and the fourth equalities follow since cmd(M) = cmd(R), and dim(A) = dim(R)
respectively. Hence, cmd(Gm(M)) = cmd(A).
(iii) ⇒ (i): From cmd(Gm(M)) = cmd(A) we have dim(M) = dim(R) − depth(A) + depth(Gm(M)).
Also, since pdimR(M) = pdim(Gm(M)), we have depth(M) = depth(R)−depth(A)+depth(Gm(M)).
Thus, it follows that cmd(M) = dim(M)− depth(M) = dim(R)− depth(R) = cmd(R).

Finally, if any of the conditions (i)-(iii) hold, then by [1, Corollary 4.1], we get e(M) = e(R)
β0
p!

∏p
i=1 δi.

□

Theorem 4.12. Let M be an R-module with pdim(M) = p <∞. Let

F• : 0 → Fp
ϕp−→ Fp−1 → · · · → F1

ϕ1−→ F0 → 0

be a minimal resolution of M with βi = rank(Fi). Then the following are equivalent:

i) Gm(M) has a pure resolution and is Cohen-Macaulay.
ii) A is Cohen-Macaulay and the following hold:

(a) F∗
• is acyclic.

(b) βi = biβ0 for i = 1, . . . , p, where bi = (−1)i−1
∏

j ̸=i
δj

δj−δi
.

(c) The multiplicity of M ,

e(M) = e(R)
β0
p!

p∏
i=1

δi.

iii) Gm(M) has a pure resolution, and A and M are Cohen-Macaulay.

Proof. (i) ⇒ (ii): Since Gm(M) has a pure resolution, by Theorem 4.5, F∗
• is acyclic and it is a

minimal pure resolution of Gm(M) of type (0, δ1, . . . , δp,∞,∞, . . .) with βAi (Gm(M)) = βi. Hence, by
[1, Theorem 4.9], we get that A is Cohen-Macaulay. Since Gm(M) is Cohen-Macaulay, the statements
(b) and (c) hold by Theorem 4.11.
(ii) ⇒ (iii): If F∗

• is acyclic and the Betti numbers of M satisfy (b), then by Theorem 4.11 and the fact
that A is Cohen-Macaulay, we get that E = coker(ϕ∗1) is Cohen-Macaulay of dimension dim(R) − p
(by the Auslander-Buchsbaum formula). With ϵ : Gm(F0) → Gm(M) as in Remark 2.10, we have
ϵ ◦ ϕ∗1 = 0 by Lemma 4.1. Therefore, Im(ϕ∗1) ⊂ ker(ϵ), which gives us the short exact sequence

0 → K → E → Gm(M) → 0.

By [1, Corollary 4.1], we have e(E) = e(R)β0

p!

∏p
i=1 δi. We also have e(Gm(M)) = e(M) by definition

and hence, e(Gm(M)) = e(R)β0

p!

∏p
i=1 δi = e(E). Note that dim(Gm(M)) = dim(M) ≥ depth(M) =

depth(R)− p = dim(R)− p = dim(E). Since E maps onto Gm(M), we have dim(E) = dim(Gm(M)).
Note that dim(K) ≤ dim(E) = dim(Gm(M)). Then e(Gm(M)) = e(E) forces dim(K) < dim(E), for
example, by using properties of the respective Hilbert series. Theorefore, K = 0 by Lemma 4.9. So,
F∗
• is a resolution of Gm(M) ≃ E, which is pure. Note that since A is Cohen-Macaulay, so is R. Since
Gm(M) has a pure resolution and A is Cohen-Macaulay, by (ii) ⇒ (i) of Theorem 4.11, we get that
M is Cohen-Macaulay.
(iii) ⇒ (i): Since A is Cohen-Macaulay, so is R. Since Gm(M) has a pure resolution and M is
Cohen-Macaulay, by (i) ⇒ (iii) of Theorem 4.11, we get that Gm(M) is Cohen-Macaulay. □
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[5] J. Herzog, M. Kühl, On the Betti numbers of finite pure and linear resolutions, Communications in Algebra, 12:13
(1984), 1627-1646.

[6] J. Herzog, M. E. Rossi, G. Valla, On the depth of the symmetric algebra, Transactions of the American Mathematical
Society, 296 (1986), No. 2, 577-606.

[7] J. Herzog, V. Welker, S. Yassemi, Homology of powers of ideals: Artin-Rees numbers of syzygies and the Golod
property, Algebra Colloq., 23 (2016), 689-700.

[8] R. Kumar, Betti tables over standard graded rings, Ph.D. Thesis, IIT Bombay, 2017.
[9] T. Puthenpurakal, On associated graded modules having a pure resolution, Proceedings of the American Mathematical
Society, 144 (2016), No. 10, 4107-4114.

[10] M. E. Rossi, L. Sharifan, Consecutive cancellations in Betti numbers of local rings, Proceedings of the American
Mathematical Society, 138 (2010), No. 1, 61-73.

[11] A. Sammartano, Consecutive cancellations in Tor modules over local rings, Journal of Pure and Applied Algebra,
220 (2016), 3861-3865.

Department of Mathematics, I.I.T. Bombay, Powai, Mumbai 400076.
Email address: ananth@math.iitb.ac.in

Department of Mathematics, Purdue University, West Lafayette, IN 47907.
Email address: mbatavia@purdue.edu

Department of Mathematics, I.I.T. Bombay, Powai, Mumbai 400076.
Email address: omkar@math.iitb.ac.in


	1. Introduction
	2. Preliminaries
	2.1. Graded Betti Numbers and Pure Resolutions
	2.2. Cohen-Macaulay Defect
	2.3. Associated Graded Rings and Modules

	3. Submodule of a Free Module and an Induced Filtration
	4. Free Resolutions over Associated Graded Rings
	References

