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Abstract. In this article we prove some results about free resolutions of modules over
commutative rings with unity. In Section 3, we discuss some notions which are additive in
the sense of short exact sequences, and prove some results about finiteness of free resolutions
in some special cases. We then discuss resolutions of local rings with nonzero annihilators.
Section 4 contains some general results on free resolutions. In Section 5, we construct free
resolutions of monomial ideals in a bivariate polynomial ring over a field.

One of the goals of this article is to document the process of discovery, through which
we arrived at the various ideas and results, starting from examples. The appendix describes
this process.

1. Background

This article is the documentation of the work done by the first six authors on the first ex-
ploratory project on Free Resolutions in a course on advanced commutative algebra (Course
No.: MA839) taught by Prof. H. Ananthnarayan in Spring 2021 at IIT Bombay. At the be-
ginning of the project work, all six authors knew the contents of what is usually covered in a
first course in commutative algebra. In particular, the authors were familiar with the notions
of local rings, Noetherian and Artinian modules, structure theorem for modules over a PID,
localisation, tensor products, exact sequences and flatness. The authors were introduced to
the construction of a free resolution at the beginning of the project.

2. Definitions and Notation

By a ring, we shall always refer to a commutative ring with unity. We shall also implicitly
assume that the ring is nonzero.
For a positive integer n, we denote byR⊕n the direct sum of n copies ofR, with the convention
that R⊕0 = {0}.

Definition 2.1. A multiplicative subset A ⊂ R is a subset such that 0 /∈ A, 1 ∈ A, and if
a, b ∈ A, then ab ∈ A. We shall denote the localization of R with respect to A by A−1R.
Similarly, if M is an R-module, we shall denote the localization of M with respect to A by
A−1M .

Definition 2.2. A free R-module (of finite rank) is an R-module F such that F ∼= R⊕n for
some n ≥ 0.
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Note: Throughout this document, we simply use “free R-module” to refer to a free R-module
of finite rank.

Definition 2.3. Given an R-module M , a free resolution of M over R (or an R-free reso-
lution of M ) is an exact sequence of the form

· · · dn+2−−−→ Fn+1
dn+1−−−→ · · · d2−→ F1

d1−→ F0
d0−→M → 0,

where each Fi is a free R-module.

The resolution is said to have finite length (or said to be finite) if there exists N such that
Fn = 0 for all n > N . Otherwise, it is said to have infinite length (or be infinite).

Note that as a consequence of exactness at M , it follows that M is finitely generated since
F0 has finite rank (by our convention).

Example 2.4. Consider the ring R = Z/6Z and M = Z/2Z.
Since M is generated by the single element 1̄, we define F0 = R⊕1 and d0 to be the map
1̄ 7→ 1̄.
Then, ker(d0) is the submodule of F0 generated by 2̄. Thus, we define F1 = R⊕1 and d1 to
be the map 1̄ 7→ 2̄.
Proceeding similarly, we see that each stage, the kernel is generated by one element and
thus, we can keep mapping R⊕1 onto the kernel to get the following resolution.

· · · → R⊕1 ·3̄−→ R⊕1 ·2̄−→ R⊕1 ·3̄−→ R⊕1 ·2̄−→ R⊕1 1̄ 7→1̄−−→M → 0.

This is an example of an infinite free resolution of M over R. Note that at each step, we did
everything “minimally” and thus, one would expect that there is no finite free resolution.

3. Existence of Finite Free Resolutions

3.1. Additive functions over short exact sequences.

Question 3.1. We had seen a free resolution of Z/2Z over Z/6Z which was infinite. Does
there exist a finite free resolution?

Question 3.2. Does there exist a finite free resolution of k as a k[x]/〈x2〉 module?

Instead of answering the particular questions above, we answer it in a more general setting.

Proposition 3.3. Let R be a finite ring and M a finitely generated R-module. If |M | is not
a power of |R|, then M has no finite free resolution over R.

Note that |M | is finite by our assumption of R being finite.

Proof. Note that at an arbitrary stage of the free resolution, we have a diagram as follows.
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0

Kn

· · · Fn+1 Fn Fn−1 · · ·

Kn−1

0

dn+1

dn ,

where Kn := ker(dn).

Note that the diagonal is exact and hence, we have

|Fn| = |Kn||Kn−1|.

(By our assumption, all the modules appearing above do have finite cardinality.)

Now, note that the left hand side is a power of |R|. Thus, we see that |Kn| is a power of |R|
if and only if |Kn−1| is.

Recall that to have a finite free resolution, we must have that some Km is free. In particular,
|Km| must be a power of |R|. By induction, this is possible only if |K0| was a power of R.
However, we note that we have

0 −→ K0 −→ F0 −→M −→ 0.

By the same logic as earlier, |K0| is not a power of |R| if |M | is not. This finishes the
proof. �

Corollary 3.4. There is no finite free resolution of Z/2Z over Z/6Z.
More generally, given n ∈ N \ {1}, if 1 < d < n and d | n, then Z/dZ does not have a finite
free resolution over Z/nZ.

This also answers Question 3.2 when k is finite.

Corollary 3.5. Let k be a finite field, n ∈ N, and R = k[x]/〈xn〉. If n > 1, then k does not
have a finite free resolution over R.

Proof. Let q := |k|. Then, |R| = qn > q = |k|. �

Notation: The length of an R-module M is denoted by λR(M).
Note that if R is Artinian, and M a finitely generated R-module, then λR(M) is indeed
finite.

Generalization 3.6. Let R be an Artinian ring, and M a finitely generated R-module. If
λR(R) - λR(M), then M has no finite free resolution over R.
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Proof. The idea is the same as earlier. Given a short exact sequence

0→ N → F → L→ 0

of R-modules, we have λR(F ) = λR(N) + λR(L). If F is free, then additivity of lengths tells
us that λR(F ) = rank(F )λR(R). In particular, λR(R) | λR(F ). Thus, λR(N) is a multiple of
λR(R) if and only if λR(L) is.

The earlier argument now goes through. �

With the above, we can now answer Question 3.2 even when k is infinite.

Corollary 3.7. Let k be any field. Then, k has no finite free resolution over k[x]/〈xn〉 for
n > 1.

Proof. Letting R := k[x]/〈xn〉. Then, λR(R) > 1 since 〈x〉/〈xn〉 is a R-submodule strictly
between 0 and R.
On the other hand, any R-submodule of k must necessarily be a k-vector space and thus,
λR(k) = 1. �

Generalization 3.8. Instead of length, we could work with any number νR(M) associated
to a module M which is “additive” in the sense of short exact sequences. In fact, the original
proposition was working with νR(M) = log|R| |M |.

Note that the above is a bit imprecise. We don’t necessarily define νR(M) for all R and all
M. For example, log|R| |M | only makes sense for finitely generated modules over finite rings.
On the other hand λR(M) only made sense for finitely generated modules over Artinian
rings.
Also, note that log|R| |M | is not integer valued. By “a | b”, we still mean that b is an integer
multiple of a.

Generalization 3.9. Let R be Artinian and M a finitely generated R module. If there exists
a multiplicative subset A ⊂ R such that λA−1R(A−1R) - λA−1R(A−1M), then there is no finite
free resolution of M over R.

Note that A−1R is again Artinian and so the above makes sense.

Proof. Suppose that there were a finite free resolution of M over R. Since localization is
an exact functor, localizing the resolution with respect to A gives a finite free resolution of
A−1M over A−1R. However, this is a contradiction, by the previous generalization. �

Generalization 3.10. Let S be an R-algebra which is an Artinian ring and flat as an R-
module. Let M be a finitely generated R-module. If λS(S) - λS(S ⊗R M), then M has no
finite R-free resolution.

Proof. The same proof as earlier goes through by the assumption of flatness. �

Remark 3.11. We have seen that length is one example of an additive function on modules.
We note that for some specific rings, the rank of a module turns out to be additive function
on modules.
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Let R be an integral domain. Let A = R\{0} be a multiplicatively closed set. Let K = A−1R
be the field of fractions of R.

Definition 3.12 (Rank of a module). Let M be an R-module where R is an integral
domain. The rank of M is defined as the cardinality of the largest R-linearly independent
subset of M .

Remark 3.13. LetR be an integral domain andM be anR-module such that {x1, x2, · · · , xn}
is an R-linearly independent subset. Then, {x1/1, x2/1, · · · , xn/1} is a K-linearly indepen-
dent subset of A−1M as a K-vector space. Similarly, if {x1/s1, x2/s2, · · · , xn/sn} is a K-
linearly independent set of A−1M then {x1, x2, · · · , xn} is an R-linearly independent subset
of M . Since a maximal linearly independent set of a vector space is a basis, we see that for
modules of finite rank over an integral domain rankR(M) = dimK(A−1M).

Theorem 3.14 (Additivity of rank). Consider the following exact sequences of finitely
generated R-modules, where R is an integral domain.

0 M1 M M2 0

Then, we have that rank(M1)− rank(M) + rank(M2) = 0.

Proof. Let K be the fraction field of R. We localize the given exact sequence with respect to
A = R \ {0} to get an exact sequence of K-vector spaces.

0 A−1M1 A−1M2 A−1M3 0

Using the above remark that rankR(M) = dimK(A−1M), and the additivity of dimension of
vector spaces, we get the result. �

Remark 3.15. The above result is analogous to the rank-nullity theorem for vector spaces.

3.2. Local rings with nonzero annihilators. Propositions 3.3 and 3.6 fail to give an
answer when |M | is actually a power of |R|. For example, the following question cannot be
answered by these propositions.

Question 3.16. Does there exist a finite free resolution of Z/2Z⊕Z/2Z as a Z/4Z module?

Trying to compute the resolution optimally at each step suggests that the answer is “no.”
Indeed, that is the case. As before, we give a more general result.

Proposition 3.17. Let (R,m) be a local ring. Further assume that m = 〈x〉 for some
x ∈ N (R)\{0}. Let M be a finitely generated R-module. Then, M has a finite free resolution
over R if and only if M is free.

We can generalize further.

Proposition 3.18. Let (R,m) be a local ring such that the annihilator of the maximal ideal
is non trivial i.e. annR(m) 6= 0. Let M be a finitely generated R-module. Then, M has a
finite resolution if and only if M is free.
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Proof. (⇒) If M is not free, consider a finite free resolution of M , minimum with respect to
length

0−→Fn
φn−→ Fn−1

φn−1−→ · · ·−→F0
φ0−→M → 0.

Since M is not free, we have n ≥ 1.

Let {e1, . . . , ed} and {f1, . . . , fk} be bases of Fn and Fn−1 respectively. Let A be the k × d
matrix of φn with respect to these bases.

Claim: Each column of A contains at least one unit.

Proof of claim. Choose y ∈ annR(m) \ {0}. For the sake of contradiction, suppose that the
jth column of A contains no unit, that is, assume that the jth column is {a1, . . . , ak} ⊂ m.
Then

φn(yej) = yφn(ej) =
k∑
i=1

yaifi = 0,

which contradicts the injectivity of φn. This proves the claim. �

Let the first column of A be {a1, . . . , ak}, and suppose al is a unit. Therefore, using a scaling
operation (e1 → (al)

−1e1), a row exchange (fl ←→ f1), and row and column transformations
(ei → ei − ae1, fj → fj − af1), we can convert A to a matrix of the form[

1 0
0 B

]
Note that applying the above claim, each column of B has a unit too. Repeating the process,
we can transform the bases such that the corresponding matrix is of the form

I or

[
I
0

]
or
[
I 0

]
.

The third case is ruled out by injectivity of φn (or the above claim). Call the transformed
bases {e′1, . . . , e′d} and {f ′1, . . . , f ′k}. Then φn(e′i) = f ′i ∀i ∈ {1, . . . , d}, and f ′j /∈ im(φn) =
ker(φn−1) ∀j > d.

We now have another free resolution of M :

0−→F ′n−1

φ′n−1−→ Fn−2
φn−2−→ · · · → F0

φ0−→M → 0,

where F ′n−1 is the free submodule of Fn−1 generated by {f ′d+1, . . . , f
′
k}, and φ′n−1 is the

restriction of φn−1 to F ′n−1. This contradicts the minimality of our original free resolution.

(⇐) If M is free, it has a free resolution of length 0. �

The above proof technique1 also yields the following result about rings.

Proposition 3.19. Let S be a nonzero ring, and φ : S⊕m → S⊕n be injective. Then m ≤ n.

1We had seen this technique in https://math.stackexchange.com/a/1174915/ and later found out that
it is a standard technique.

https://math.stackexchange.com/a/1174915/
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Proof. We will prove this by induction on n. The base case n = 0 is trivially true. Suppose
m > n, then we have an inclusion from ψ : S⊕n → S⊕m.

We first note that every ring contains a subring generated by 1 and it is Noetherian. Let
R be the subring of A generated by 1 and the elements of the coefficients of φ. Then, by
Hilbert basis theorem, R is Noetherian.

By restricting φ to R⊕m we have map φ : R⊕m → R⊕n which is R-linear. Every ring
has a minimal prime ideal (Zorn’s lemma), and localizing at a minimal prime ideal of R
gives us a Noetherian local ring with unique prime ideal. So, we may assume that R is
Noetherian and local with a unique prime ideal, which is the nilradical of R. Consider the
maps φ : R⊕m → R⊕n and ψ : R⊕n → R⊕m.

Let f = ψ ◦ φ. Consider the coefficients of the matrix of f . If all the entries belong to the
unique prime ideal, then the matrix f is nilpotent. But f is composition of two injective
maps and hence it cannot be nilpotent.

Hence, the matrix of f must contain at least one coefficient which does not belong to the
unique prime ideal. Thus, the matrix of φ must contain at least one entry which is a unit.
Then, by a sequence of row and column operations we can reduce the matrix of φ to the

following form

[
1 0
0 A′

]
.

Thus, the map φ can be viewed as a map from R⊕R⊕(m−1) → R⊕R⊕(n−1) and by induction
it follows that m− 1 ≤ n− 1 contradicting m > n. �

Remark 3.20. As a consequence, we get the result that if R⊕n ∼= R⊕m, then n = m. Thus,
we have shown that every nonzero ring has invariant basis number property.

4. Some General Results

Question 4.1. If M is finitely generated and M ∼= F1/K1
∼= F2/K2 for F1 = R⊕n1 and

F2 = R⊕n2 , then

(1) is n1 = n2?

(2) is K1
∼= K2?

Answer. Both questions have negative answers, in a trivial manner. Indeed, given M ∼=
F1/K1, we can define F2 := F1 ⊕R.

Then, we have the natural maps

F1 ⊕R
π−→ F1

ϕ−→M.

Then, putting K2 := ker(ϕ ◦ π) gives us that M ∼= F2/K2. But, F2 6∼= F1 and K2
∼= K1 ⊕ R.

One can easily find examples of when K1⊕R 6∼= K1. For example, if K1 is finitely generated.

To be very explicit, we may take M = R = F1 and F2 = R ⊕ R. Then, with the natural
maps, K1 = 0 6∼= R ∼= K2. �
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Question 4.2. Suppose that n1 = n2 above. Is it then necessary that K1
∼= K2?

Equivalently, if F = R⊕n and F/K1
∼= F/K2, is it necessary that K1

∼= K2?

Before we give the general answer, we first see two cases where the question has a positive
answer, namely when n = 1 and when R is a PID.

Proposition 4.3. Let I1 and I2 be submodules of R such that R/I1
∼= R/I2 as R-modules.

Then, I1 = I2.

Proof. Note that if M and N are isomorphic R-modules, then annRM = annRN. Moreover,
a submodule I ⊂ R is simply an ideal and annR(R/I) = I. Thus, we note

R/I1
∼= R/I2 =⇒ annR(R/I1) = annR(R/I2) =⇒ I1 = I2. �

Proposition 4.4. Let R be a PID and n ≥ 1. Let K1 and K2 be submodules of R⊕n such
that R⊕n/K1

∼= R⊕n/K2. Then, K1
∼= K2.

Proof. Let M ' R⊕n/K1. Consider a short exact sequence

0→ K1 → R⊕n →M → 0.

Since R is a PID, we know that K1 is again a free module, with rank(K1) ≤ n. Localizing
the above short exact sequence with respect to A = R \ {0}, we get the exact sequence

(1) 0→ A−1K! → A−1
(
R⊕n

)
→ A−1M → 0.

Let K be the fraction field of R. Note that the above is an exact sequence of K-vector spaces.

Also, recall that
rankR(F ) = dimK(A−1F )

for any free R-module F. As a result, we get that A−1M is a finite dimensional K-vector
space such that

rank(K1) = n− dimK(A−1M).

A similar argument shows that K2 is a free R-module with rank(K2) = n − dimK(A−1M),
since M ' R⊕n/K2. Thus, the kernels K1 and K2 are both free R-modules of the same rank,
and hence are isomorphic. �

Generalization 4.5. Instead of assuming R to be a PID, we may assume that R is an
integral domain and that K1 and K2 are free.

For n > 1, the answer to Question 4.2 is “no” in general. An example showing this can
be given with the help of stably free modules. An R-module P is called stably free if
P ⊕ R⊕n ∼= R⊕m for some natural numbers m,n. Not all stably free modules are free2.
Thus, for a stably free module P which is not free with P ⊕R⊕n ∼= R⊕m, both the quotients
R⊕m/R⊕(m−n) and R⊕m/P are isomorphic to R⊕n but P 6∼= R⊕(m−n).

Note that if we drop the “finite rank” condition, then the question is not so difficult as the
next example shows.

2One such example can be found at https://kconrad.math.uconn.edu/blurbs/linmultialg/

stablyfree.pdf

https://kconrad.math.uconn.edu/blurbs/linmultialg/stablyfree.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/stablyfree.pdf
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Example 4.6. Consider the free module

F =
∞⊕
i=1

R

and the R-linear map ϕ : F → F given by

ϕ(r1, r2, r3, . . .) = (r2, r3, . . .).

Clearly, ϕ is surjective and ker(ϕ) ∼= R; this gives us that F/ ker(ϕ) ∼= F ∼= F/0 but
ker(ϕ) 6∼= 0.

Note that if we drop the “free”-ness, it is easy to come up with examples of isomorphic
quotients without isomorphic kernels as the next example shows.

Example 4.7. Consider the Z-module M = Z/4Z ⊕ Z/2Z. Let N1 = Z/4Z ⊕ 0 and N2 =
Z/2Z ⊕ Z/2Z. Note that N1 and N2 are Z-submodules of M with N1 6∼= N2. However, we
have M/N1

∼= M/N2.

5. Resolutions of Monomial Ideals in Two Variables

We now compute free resolutions of k[x, y]/I over k[x, y], where I is a monomial ideal in
k[x, y]. First, we mention two examples which indicated how to proceed in the general case.

Example 5.1. Let I1 = 〈x, y〉.
Note that if f(x, y)x + g(x, y)y = 0 for some f(x, y), g(x, y) ∈ k[x, y], then there exists
h(x, y) ∈ k[x, y] such that

f(x, y) = yh(x, y) and g(x, y) = −xh(x, y).

Therefore, the following is a free resolution of k[x, y]/I1 over k[x, y].

0→ k[x, y]
[ y
−x ]
−−−→ (k[x, y])⊕2 [x y ]−−−→ k[x, y]→ k[x, y]/I1 → 0.

Example 5.2. Let I2 = 〈x2, xy, y2〉.
Note that if

a1x
2 + a2xy + a3y

2 = 0

for some a1, a2, a3 ∈ k[x, y], then we have a1 = b1y and a3 = b3x for some b1, b3 ∈ k[x, y].
Therefore, b1x+ a2 + b3y = 0 which gives a2 = −b1x− b3y and hence,a1

a2

a3

 = b1

 y
−x
0

− b3

 0
y
−x

 .
Also, the elements

 y
−x
0

 and

 0
y
−x

 of (k[x, y])⊕3 are linearly independent.

Thus, following is a free resolution of k[x, y]/I2 over k[x, y].

0→ (k[x, y])⊕2

[
y 0
−x y
0 −x

]
−−−−−−→ (k[x, y])⊕3 [x2 xy y2 ]−−−−−−→ k[x, y]→ k[x, y]/I2 → 0.
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In both the examples above we see that for the monomial ideal In of k[x, y] generated by all
n+ 1 monomials of the degree n, there is a resolution of R/In of the form

0→ R⊕n → R⊕(n+1) → R→ R/In → 0.

Indeed, this is always the case, and we have the following proposition.

Proposition 5.3. Let n ∈ N and In be the monomial ideal of R = k[x, y] generated by all
n+ 1 monomials of degree n. That is,

In = 〈xn, xn−1y, . . . , xyn−1, yn〉.
Then there exists an R-free resolution of R/In of the form

0→ R⊕n → R⊕(n+1) → R→ R/I → 0.

We separate out the main part of the proof in the following lemma.

Lemma 5.4. There exists a R-free resolution of In of the form

0→ R⊕n → R⊕(n+1) → In → 0.

Proof. Let {e1, . . . , en+1} denote the standard basis of R⊕n+1, and {f1, . . . , fn} denote the
standard basis of R⊕n. Define v1, . . . , vn ∈ R⊕n+1 by vi = yei − xei+1. In matrix form, note
that we have

v1 =



y
−x
0
0
...
0

 , v2 =



0
y
−x
0
...
0

 , . . . , vn =



0
0
...
0
y
−x

 .
(Note that the length of each column is n+ 1.)

Claim. {v1, . . . , vn} is linearly independent.
Suppose a1v1 + · · ·+ anvn = 0 for some ai ∈ R. In matrix form, we have

a1



y
−x
0
0
...
0

+ a2



0
y
−x
0
...
0

+ · · ·+ an



0
0
...
0
y
−x

 =



0
0
...
0
0
0

 .

Comparing the entries from top to bottom, we inductively see that a1 = · · · = an = 0.

Our aim now is to show that the vi essentially capture all the relations between the generators
of In.

Consider the R-linear maps φ and ψ as in

0→ R⊕n
φ−→ R⊕n+1 ψ−→ I → 0

defined by
φ(fi) = vi and ψ(ej) = xn+1−jyj−1.
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φ is injective since {vi}i is linearly independent and ψ is surjective since I = 〈xn+1−jyj−1 |
1 ≤ j ≤ n+ 1〉. We now show exactness at the middle.

Note that

ψ(φ(fi)) = ψ(vi) = ψ(yei − xei+1) = (yxn+1−iyi)− (x)(xn+1−i−1yi) = 0

and hence, im(φ) ⊂ ker(ψ). By construction, this was expected since (y,−x) was capturing
the obvious relation between xi+1yj and xiyj+1. We now show the reverse containment.

Let w = a1e1 + · · ·+ anen ∈ ker(ψ). We shall inductively choose coefficients for vi’s to show
that w can be written as a R-linear combination of vi’s, which would imply that w ∈ im(φ).
For 1 ≤ i ≤ n+ 1, let πi : R⊕n+1 → R⊕n+1 be the unique R-linear map such that

πi(ej) =

{
ej if 1 ≤ j ≤ i,

0 if i < j.

(Thinking about it in terms of column vectors, we are simply restricting the column of length
n+ 1 to its first i entries.)

As ψ(a1e1 + · · ·+ anen) = 0 we have

a1x
n + a2x

n−1y1 + · · ·+ an+1y
n = 0.

This means that y | a1 or a1 = yb1 for some b1 ∈ k[x, y] = R. Thus, we get

π1(w − b1v1) = π1(w)− π1(b1v1) = a1 − b1y = 0.

Inductively assume that for some j ≤ n− 1 there exist b1, . . . , bj ∈ R such that

πj(w − (b1v1 + · · ·+ bjvj)) = 0.

Then w − (b1v1 + · · ·+ bjvj) is of the form w1 = cj+1ej+1 + · · ·+ cn+1en+1, for some ck ∈ R.
We apply ψ to w − (b1v1 + · · ·+ bjvj) to conclude that

cj+1x
n−jyj + · · ·+ cn+1y

n = 0

(as vi’s and w are in the kernel and ψ is R-linear). Now, dividing the above equation by yj,
we conclude that y | cj+1.
Therefore, cj+1 = ybj+1 for some bj+1 ∈ R. Now, observe that

w − (b1v1 + · · ·+ bjvj + bj+1vj+1) = w1 − bj+1vj+1

= cj+1ej+1 + · · ·+ cn+1en+1 − ybj+1ej+1 + xbj+1ej+2

= cj+2ej+2 + · · ·+ cn+1en+2 + xbj+1ej+2.

Thus, we see that

w − (b1v1 + · · ·+ bjvj + bj+1vj+1) ∈ 〈ej+2, . . . , en+1〉 ⊂ ker(πj+1).

Therefore, by induction we conclude that there exist b1, . . . , bn ∈ R such that w−(b1v1+· · ·+
bnvn) is of the form bn+1en+1. By applying ψ we get bn+1y

n = 0, i.e., bn+1 = 0. Therefore
w = b1v1 + · · ·+ bnvn ∈ im(φ), and hence ker(ψ) ⊂ im(φ). Therefore the sequence

0→ R⊕n
φ−→ R⊕(n+1) ψ−→ I → 0.
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is exact. This completes the proof. �

Using the lemma we now complete the proof of the proposition.

Proof. By the lemma proved above, we have a free resolution of In of the form

0→ R⊕n
φ2−→ R⊕(n+1) φ1−→ In → 0.

Therefore, R/I has a free resolution

0→ R⊕n
φ2−→ R⊕(n+1) φ1−→ R

φ0−→ R/In → 0,

where φ0(1) = 1̄. �

Generalization 5.5. The above generalizes to monomial ideals generated by monomials of
the same degree, even if we don’t take all possible monomials. That is, let k > 1 and consider
the ideal

I = 〈xr1yn−r1 , . . . , xrkyn−rk〉
for some integers n ≥ r1 > · · · > rk ≥ 0. Then, we have the following R-free resolution:

0→ R⊕(k−1) → R⊕k → I → 0.

Sketch of proof. The proof is almost identical to the earlier case. Instead of vi = yei−xei+1,
we now define

vi := yri−ri+1ei − xri−ri+1ei+1

for 1 ≤ i ≤ k − 1.

Again, looking at the matrix form of vi’s shows that they are linearly independent. As before,
each vi is capturing an obvious relation between two generators and hence, is in the kernel.
The work is now to show that these are all the relations.

The base case of the induction again follows by taking yn−r1 common from

a1x
r1yn−r1 + · · ·+ akx

rkyn−rk = 0

and noting that yr1−r2 divides all but the first term and hence, yr1−r2 | a1.

The inductive step is carried out similarly. �

Generalization 5.6. The above generalizes even further to finitely generated monomial
ideals, with monomial generators not necessarily of same degree. That is, let k > 1 and
consider the ideal

(2) I = 〈xr1ys1 , . . . , xrkysk〉
such that

r1 > · · · > rk ≥ 0,

0 ≤ s1 < · · · < sk.

Then, we have the following R-free resolution:

0→ R⊕(k−1) → R⊕k → I → 0.
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Sketch of proof. Things work as earlier by defining

vi := ysi+1−siei − xri−ri+1ei+1

for 1 ≤ i ≤ k − 1. �

Remark 5.7. Note that given any ideal which is generated by finitely many monomials of
the form xaiybi , we can always put it in the form (2), by removing redundancies.

Indeed, if ai = aj, then one of xaiybi or xajybj divides the other. Thus, we may assume
ai > aj. In this case, we must have bi < bj or else xajybj would divide xaiybi .

Remark 5.8. Since k[x, y] is Noetherian, we see that any monomial ideal is actually gener-
ated by finitely many monomials. Thus, by the previous remark, we see that the “finitely
generated” hypothesis in Generalization 5.6 can be dropped and we actually have the result
for all monomial ideals.

In view of the earlier remarks, we have actually proven the following.

Theorem 5.9. Let k be a field and I ⊂ k[x, y] be a nonzero monomial ideal. Then, R/I has
a free resolution of the form

0→ R⊕n → R⊕(n+1) → R→ R/I → 0.

Appendix A. The Process - by H. Ananthnarayan

The mathematical content of this article is the outcome of an exploratory project carried
out by the first six authors, as a part of an advanced course in commutative algebra taught
by me. The aim of this project was to get the students comfortable with the notion of a
free resolution by working with various examples, to make them realize the kind of questions
that can come up, and to figure out some techniques to answer these questions. This article
is a combined report of two groups, who had come up with similar (and some overlapping)
results.

At the beginning of the project, the students were introduced to construction of free reso-
lutions as a consequence of the fact that every module can be written as the quotient of a
free module. After discussing examples of free resolutions over fields and PIDs, they were
given specific examples, so that they could compare and contrast, come up with questions or
conjectures, and try to answer as many of those as they could. Some open-ended questions
were also asked to give them some direction. Some of the examples and questions are listed
below:

Notation: k is a field, and R is a commutative ring with unity.

(1) Find a free resolution of k as a module over:
(i) k (ii) k[X] (iii) k[[X]] (iv) k[X]/〈X2〉
(v) k[X, Y ] (vi) k[X, Y ]/〈X2, XY 〉 (vii) k[X, Y, Z]

(2) Find a free resolution of Z/2Z as a module over (i) Z (ii) Z/2Z (iii) Z/4Z (iv) Z/6Z.

(3) Find a free resolution of k[X, Y ]/I over k[X, Y ], where I =
(i) 〈X, Y 〉 (ii) 〈X2, Y 2〉 (iii) 〈X2, XY 〉 (iv) 〈X2, XY, Y 2〉 (v) 〈X〉
Do the same over k[X, Y, Z] for I = (i) 〈X, Y 〉 (ii) 〈X2, XY, Y 2〉 and (iii) 〈X, Y, Z〉.
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(4) If a ∈ R is not a unit, is 0 → R
·a→ R → R/〈a〉 → 0 an R-free resolution of R/〈a〉?

Why or why not?

(5) Based on Q(1) - Q(4), make conjectures about R-free resolutions of special classes of
R-modules, e.g.,
(i) R/I where I is principal, or generated by 2 elements. (ii) A quotient of k[X, Y ].
(iii) Any other class.
Do your conjectures have a positive, or a negative answer?

(6) Let M be a finitely generated R-module, F1 ' R⊕n1 , F2 ' R⊕n2 , and Kj ⊂ Fj be
such that M ' Fj/Kj, for j = 1, 2.

(a) Find an example to show that n1 and n2 need not be equal.

(b) If n1 = n2, is it necessary that K1 ' K2?

(7) Given free resolutions for two of the three modules in a short exact sequence of
R-modules, can we construct a free resolution for the third?

After a week of group discussions, new groups, called jigsaw groups, were formed for the
purpose of sharing information. Each jigsaw group consisted of one member from each of
the original groups, where they shared their questions and results with the other groups.
This interaction was useful in validating some of their questions and results, and also gave
them new ideas and generalizations to pursue. After this exercise, they went back to the
original groups, and worked for another week before they wrote a preliminary report. The
jigsaw groups led to two groups being influenced by each other, which led to this joint report.

Throughout the process, the students also kept updating me about their results, and I would
ask more questions based on what they had. For example, when one group came up with
Proposition 3.3, with suitable hints, they realized that cardinality could be replaced by length
(Generalization 3.6), and further led to the contents of Subsection 3.1. Similarly, with a few
leading questions, Proposition 3.17 was generalized to Proposition 3.18, which is the base
case of the celebrated Auslander-Buchsbaum formula.

The contents of Section 5, in which resolutions of monomial ideals in a bivariate polynomial
ring k[X, Y ] are computed, are the consequence of looking at examples. The idea for con-
structing the resolution for the ideal 〈X, Y 〉n for any n ∈ N came from looking at the ideals
〈X, Y 〉, and 〈X2, XY, Y 2〉. The students further realized that this can be used to give resolu-
tions for any monomial ideal in k[X, Y ]. Given time, and some direction, the students could
have used these ideas to come up with the Taylor resolution, a resolution for a monomial
ideal in a polynomial ring in any finite number of variables over a field.

The upshot is that:
(i) the initial set of examples gave the students a feel for constructing resolutions, and to
come up with questions, and test their ideas.
(ii) the few open-ended questions gave some initial direction to those who did not know
where to begin.
(iii) the jigsaw groups gave them an opportunity to validate their results and see other related
questions.
(iv) discussions with me helped them explore the limits of how much they could push their
results.
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I was pleasantly surprised by the results that the students were able to reach, given where
they started in terms of background. This topic had the right mix of the known and the
unknown, gave them scope for constructing examples, for making and testing conjectures,
while also giving a feel for collaborative research work. Based on the feedback, these points
made it a productive, and fun, venture for the students, and could possibly be adapted to
projects in other courses as well.
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