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Summary

This report is divided into seven chapters. In chapter one, graded resolutions are introduced
and some related fundamental results are proved. In chapter two, we discuss Gröbner bases and
Schreyer’s algorithm to compute a (not necessarily minimal) free resolution of a finitely generated
module M over a polynomial ring S in finitely many variables. Hilbert’s syzygy theorem follows
as a corollary.
In the third chapter, we compare the homological invariants of an ideal with its initial ideal. We
also introduce the concept of polarization, which, given a polynomial ideal, produces a related
squarefree ideal in a larger polynomial ring, with the same homological invariants as the original
ideal. We also introduce the lexsegment ideal I lex of a graded polynomial ideal I, and show
that S/I and S/I lex have the same Hilbert function. In chapter four, we prove the Auslander-
Buchsbaum-Serre Theorem, which characterizes regular local rings. While doing so, we also prove
that the Koszul complex is contained in the minimal resolution of k for any Noetherian local ring
(R,m, k).
In chapter five, we prove certain results on the existence of bounds on projective dimension and
regularity of an ideal. We present a result by Burch which constructs ideals with arbitrarily large
projective dimension, but generated by just 3 elements, in a Cohen-Macaualay ring. We also
prove that Stillman’s question on upper bounds on projective dimension is equivalent to a similar
question on upper bounds on regularity. We end chapter five by discussing Koszul algebras and
proving a result by Avramov and Eisenbud which states that the regularity of any module over a
Koszul algebra is finite.
Chapter six discusses pure resolutions and begins with a theorem by Herzog and Kühl on when
a Cohen-Macaulay module over a polynomial ring can have a pure resolution. We then discuss
Herzog, Hibi and Zheng’s results on when each power of a quadratic monomial ideal can have
a linear resolution. We also discuss a couple of results by Puthenpurakal on when associated
graded modules have pure resolutions. In chapter seven, we construct the Taylor’s resolution, a
(not necessarily minimal) free resolution of any monomial ideal. We also construct the Eliahou-
Kervaire resolution, a minimal free resolution of any stable monomial ideal.
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Chapter 1

Graded Rings, Modules and Resolutions

1.1 Graded Rings and Modules

Definition 1.1.1. Let H be a cancellative monoid under addition. A ring R is said to be H-
graded if R =

⊕
i∈H

Ri, where, each Ri is an abelian group and RiRj ⊆ Ri+j, for all i, j ∈ H.

For each i, Ri is called the homogeneous component of degree i of R and the nonzero elements
of Ri are called homogeneous elements of degree i.

Remark 1.1.2.
(i) For a cancellative monoid H, we denote its associated group by G.
(ii) By an ordered monoid we mean a cancellative monoid H with an order < satisfying: whenever
a < b in H, we have a+ c < b+ c for all c ∈ H.
(iii) If H is an ordered monoid, then we say that it is well ordered if every nonempty subset S of
H which is bounded below has the least element in S.

Definition 1.1.3. A module M is called as a graded module over a graded ring R if M =
⊕
i∈G

Mi,

as a direct sum of subgroups of M and for all i ∈ H, j ∈ G, RiMj ⊆Mi+j.

Definition 1.1.4. An ideal J of a graded ring R is said to be graded if it satifies any of the
following equivalent conditions:
(i) If f ∈ J , then every homogeneous component of f is in J .
(ii) J = ⊕i∈NJi, where Ji = Ri

⋂
J .

(iii) If J ′ is the ideal generated by all homogeneous elements in J , then J = J ′.
(iv) J has a system of homogeneous generators.

Proposition 1.1.5. Given a graded ideal I in a graded ring R, every associated prime of I is also
graded.

Proof. Suppose J = (I : x) is a prime ideal for some x in R. Let x = xl + xl+1 + · · · + xk where
xi ∈ Ri, l < k and xl, xk are non-zero.
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Let y = yt + yt+1 + · · · + ys ∈ J , where yi ∈ Ri, t < s and xt, xs are non-zero. If we show that
yt ∈ J , we are done by induction on s− t.
To see this, observe that we have xy ∈ I and since I is graded, the lowest graded component of
xy, which is xlyt, belongs to I. Similarly, xl+1yt + xlyt+1 ∈ I, and on multiplying by yt, we get
that xl+1y

2
t ∈ I. Continuing in this manner, we get that xl+iy

i+1
t ∈ I for all i = 0, 1, . . . , k − l,

which implies that yk−l+1
t x ∈ I and hence, yk−l+1

t ∈ J . Since J is prime, yt ∈ J . Hence, J is a
graded ideal.

Definition 1.1.6. Let R be a H-graded ring and M =
⊕
i∈G

Mi be a finitely generated R-module.

Then we define an R-module M(d) by M(d) =
⊕
i∈G

Mi+d. M(d) is called a shifted R-module.

Definition 1.1.7. Let M =
⊕
i∈G

Mi, M
′ =

⊕
i∈G

M ′
n be graded modules over R. An R-linear map

f : M → M ′ is said to be a graded map of degree d if f(Mi) ⊆ M ′
i+d for all i ∈ G. If f has

degree zero, we simply say that f is a graded R-module homomorphism.

Proposition 1.1.8. Let R be nonnegatively graded, M,N be graded R-modules and φ : M → N
be a graded homomorphism of degree d. Then
(i) ker(φ) is a graded submodule of M .
(ii) Im(φ) is a graded submodule of N .

Proof. (i) It is clear that ker(φ) is a submodule of M considered without grading. To show that
ker(φ) is graded, it suffices to show that if x = xr + · · ·+xs, is in ker(φ), then each xi is in ker(φ).
We show that xr ∈ ker(φ) and by induction we will get that xi ∈ ker(φ) for all i. Note that
φ(xi) ∈ Ni+d. Therefore φ(xr) ∈ Nr+d ∩ (N(r+1)+d ⊕ · · · ⊕ Ns+d) = 0. This shows that φ(xr) = 0
as desired.
(ii) It is clear that Im(φ) is a submodule of N considered without grading. To show that Im(φ)
is graded, it suffices to show that if y = yr + · · ·+ ys, is in Im(φ), then each yi is in Im(φ). Since
φ(Mi) ⊆ Ni+d and y ∈ Im(φ), there exists x = xr−d + · · · + xs−d ∈ M such that φ(x) = y and
φ(xi−d) = yi. This shows that yi ∈ Im(φ). This completes the proof.

Remark 1.1.9.
(i) If I is a graded ideal of R, then we have RiIj ⊆ Ii+j.
(ii) If I is a graded ideal of R, then the quotient ring R/I inherits the grading from R by (R/I)i =
Ri/Ii.
(iii) If N is a graded submodule of a graded module M , then M/N is graded with the grading
given by (M/N)i = Mi/Ni.

Proposition 1.1.10. Tensor products of graded R-modules is graded, i.e., if M and N are graded
R-modules, then M ⊗N is graded R-module.

Proof. We know that M ⊗N is an R-module. We give grading to M ⊗N as follows:
Define (M ⊗N)i to be generated (as a Z-module) by all the elements in M ⊗N of the form m⊗n,
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where deg(m) + deg(n) = i. Then we have M ⊗N =
⊕
i∈G

(M ⊗N)i. Moreover, for any ri ∈ Ri and

m⊕ n ∈ (M ⊗N)j, we have r(m⊗ n) = (rm)⊗ n. Therefore

deg(r(m⊗ n)) = (i+ deg(m)) + deg(n) = i+ j.

This shows that Ri(M ⊗N)j ⊆ (M ⊗N)i+j. Hence M ⊗N is graded.

Let Homi(M,N) = {φ : M → N | deg(φ) = i}. Then we define ∗Hom(M,N) =
⊕
i∈G

Homi(M,N).

Remark 1.1.11. In general, ∗Hom(M,N) 6= Hom(M,N). However, we have the equality in a
special case which we will prove shortly.

Lemma 1.1.12. Let M =
m⊕
i=1

R(ni) and N be graded R-modules. Then ∗Hom(M,N) ∼= Hom(M,N)

with grading forgotten.

Proof. It is clear that every φ = φr + · · · + φs ∈ ∗Hom(M,N) is in Hom(M,N), and hence
∗Hom(M,N) ⊆ Hom(M,N). To show the other inclusion assume that φ ∈ Hom(M,N). Let
ej = (0, . . . , 0, 1, 0, . . . , 0) where 1 occurs at jth place. Then M is a free R-module with basis
{e1, . . . , em}. If φ(ej) = yj1 + · · ·+ yjrj ∈ N , then we have

φ = φ11 + · · ·φ1r1 + · · ·+ φm1 + · · ·+ φmrm

where φjs : M → N is given by φjs(ej) = yjs and φjs(ei) = 0 for all i 6= j. Note that each φjs
is well defined since {e1, . . . , em} is a basis for M . Moreover φjs is a graded homomorphism of
degree deg(yjs) + nj. Therefore φ ∈ ∗Hom(M,N). This completes the proof.

Proposition 1.1.13. Let R be a graded Noetherian ring, M be a finitely generated graded R-
module and N be any graded R-module. Then ∗Hom(M,N) = Hom(M,N) with grading forgotten.

Proof. It is clear that every φ = φr + · · · + φs ∈ ∗Hom(M,N) is in Hom(M,N), and hence we

have an inclusion ∗Hom(M,N)
i−→ Hom(M,N).

Since M is finitely generated and R is Noetherian, we get an exact sequence of graded modules

G → F → M → 0 for some F =
n⊕
j=1

R(nj) and G =
m⊕
j=1

R(mj). By the previous lemma we have

∗Hom(F,N) = Hom(F,N), ∗Hom(G,N) = Hom(G,N). Thus we have the following commutative
diagram:

0 ∗Hom(M,N) ∗Hom(F,N) ∗Hom(G,N)

0 Hom(M,N) Hom(F,N) Hom(G,N)

i

Thus by five lemma, we get that the inclusion i is an isomorphism.
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Lemma 1.1.14 (Graded Nakayama Lemma). Let H be an ordered monoid such that i > 0 for all
i ∈ H \ {0} and R =

⊕
i∈H

Ri be a graded ring. Let M =
⊕
i∈G

Mi be an R-module such that there

exists n ∈ G with Mi = 0 for all i < n. Further assume that G is well ordered. If R+ =
⊕

i∈H\{0}
Ri

and R+M = M then M = 0.

Proof. Let, if possible, M 6= 0. Let m be the smallest element of G such that for all i < m, we
have Mi = 0 and Mm 6= 0. But then, M = R+M ⊆

⊕
i m

Mi, which has mth component equal to 0.

This contradiction shows that M = 0.

Corollary 1.1.15. Let R be a non negatively graded ring and M be a finitely generated Z-graded
R-module. If R+M = M then M = 0.

Proof. Let {m1, . . . ,mr} be a generating set for M and d=min{deg(mi) | 1 ≤ i ≤ r}. Since R is
graded by N∪{0}, we get that Mn = 0, for every n < d. Thus, applying graded Nakayama lemma
proved above, we get M = 0.

1.2 Graded Resolutions

From now on we assume that R is a graded ring with R0 = k, a field. We will mostly consider
R = k[x1, . . . , xr].

Definition 1.2.1. Let M be a graded R-module and

F• : · · · −→ Fn
φn−→ Fn−1

φn−1−−−→ · · · φ1−→ F0
φ0−→M −→ 0

be a free resolution of M . If all Fi’s are graded R-modules and all φi’s are graded maps of degree
zero, then we say that F• is a graded free resolution of M .

Definition 1.2.2. Let R = k[x1, . . . , xn] and M be a graded R-module. A graded free resolution

F• : · · · → Fn
φn−→ · · · −→ F2

φ2−→ F1
φ1−→ F0

φ0−→M → 0

is said to be minimal if φi(Fi) ⊆ 〈x1, . . . , xr〉Fi−1 for all i ≥ 1.

Example 1.2.3. Let I = 〈x2, y2〉 and R = k[x, y]. Then

F• : 0←− R/I
φ0←− R

φ1←− R(−2)⊕R(−2)
φ2←− R(−4)←− 0,

where φ0(1) = 1, φ1(1, 0) = x2, φ1(0, 1) = y2, φ2(1) = (−y2, x2) is a minimal graded free resolution
of R/I over R.

7



Example 1.2.4. Let I = 〈x3, y2〉 and R = k[x, y]. Then

F• : 0←− R/I
φ0←− R

φ1←− R(−3)⊕R(−2)
φ2←− R(−5)←− 0,

where φ0(1) = 1, φ1(1, 0) = x3, φ1(0, 1) = y2, φ2(1) = (−y2, x3) is a minimal graded free resolution
of R/I over R.

Definition 1.2.5. Let R = k[x1, . . . , xn] and M be a graded R-module.

F• : · · · −→ Fn
φn−→ Fn−1

φn−1−−−→ · · · φ1−→ F0
φ0−→M −→ 0

be a minimal graded free resolution of M , where Fi =
⊕
j

R(−j)βi,j(M). Then the numbers βi,j(M)

are called graded Betti numbers of M . βi(M) =
∑
j

βi,j(M) is called the total ith Betti number

of M .

Definition 1.2.6. Let βi,j be graded Betti numbers of M . Then Betti table of M is written as

HHH
HHHj

i
0 1 · · · p · · ·

...
...

... · · · ...
...

0 β0,0 β1,1 · · · βp,p
...

1 β0,1 β1,2 · · · βp,p+1
...

...
...

... · · · ...
...

Definition 1.2.7. Let k be a field and M =
⊕
n∈Z

Mn be a finitely generated graded module over

the polynomial ring k[x1, . . . , xr]. Then the function HM : Z→ Z, given by HM(j) = dimk(Mj) is
called as Hilbert function of M.

Let k be a field and R = k[x1, . . . , xn]. Let a ∈ R \ {0} be such that deg(a) = d. Since a is a
nonzerodivisor on R, we get an exact sequence of R-modules

0 −→ R(−d)
·a−→ R −→ R/〈a〉 −→ 0.

Since R is graded, for each i, we have an exact sequence of k-vector spaces

0 −→ R(−d)i
·a−→ Ri −→ [R/〈a〉]i −→ 0.

Now, using rank-nullity theorem for vector spaces, we get

dimk(Ri) = dimk((R(−d))i) + dimk((R/〈a〉)i),

i.e.,
HR(i) = HR(−d)(i) +HR/〈a〉(i).

Therefore, HR(i) = HR(i− d) +HR/〈a〉(i) or HR/〈a〉(i) = HR(i)−HR(i− d).
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Definition 1.2.8. Given k,M as above, define the Hilbert series of M as HM(t) =
∑

j≥0HM(j)tj.

The next corollary follows from the above definition.

Corollary 1.2.9. HR/〈a〉(t) = HR(t)/(1− t)d.

Example 1.2.10. Let R = k[x, y] and a = x2. In this case, for all i ≥ 0, we have HR(i) = i + 1.
This is because the ith graded component of R, as a k-vector space is has a basis {xryi−r | 0 ≤
r ≤ i}. For the element x2, we have deg(x2) = 2. Hence, by the formula above, we must have
HR/〈x2〉(i) = (i + 1) − (i − 1) = 2; which is true as {xyi−1, yi} form a k-vector space basis of
(R/〈x2〉)i.

Proposition 1.2.11. Let M,N be graded R-modules. Then TorRi (M,N) is graded for all i.

Proof. Consider a graded free resolution of M as follows:

· · · → F2 → F1 → F0 →M → 0.

Tensoring with N gives a complex of graded modules

· · · → F2 ⊗N → F1 ⊗N → F0 ⊗N →M ⊗N → 0.

Since TorRi (M,N) is quotient of a graded submodule of a graded module by a graded submodule,
we conclude that TorRi (M,N) is graded for all i.

Remark 1.2.12. If F• is a graded free resolution ofM then we define ∗ExtiR(M,N) ∼= H i(∗HomR(F•, N)).
Then, by Proposition 1.1.13, if R is Noetherian local ring and M is finitely generated R-module,
then ∗ExtiR(M,N) ∼= ExtiR(M,N).
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Chapter 2

Gröbner Bases and Schreyer’s Algorithm

Let k be a field and S = k[x1, . . . , xr].
If a = (a1, . . . , ar), x

a will denote the monomial xa11 . . . xarr . As is convention, an ideal of S
generated by monomials will be referred to as a monomial ideal.

Definition 2.0.1. Let F be a finitely generated free module over S with basis {e1, . . . , en}.
A monomial in F is an element of the form m = xaei for some i. We say that such an m
involves the basis element ei.
A monomial submodule of F is a submodule generated by elements of this form. Any monomial
submodule M of F may be written as

M = ⊕Ijej ⊆ ⊕Sej = F,

with Ij the monomial ideal generated by those monomials m such that mej ∈M .
A term in F is a monomial multiplied by a scalar.

Definition 2.0.2. Let F be a finitely generated free module over S with basis {e1, . . . , en}.
If m, n are monomials of S, u, v ∈ k, and v 6= 0, then we say that the term umei is divisible by
the term vnej if i = j and m is divisible by n in S; the quotient is then um/vn ∈ S.

Definition 2.0.3. The set of monomials in M that are minimal elements in the partial order by
divisibility on the monomials of F are referred as minimal generators of M .

2.1 Hilbert Function of Monomial Submodules

Let F be a free S-module with basis {ei : i = 1, . . . , n}, and let M ⊆ F be a monomial submodule.
Since, as seen before, M = ⊕Ijej, we have F/M = ⊕S/Ij and, since the Hilbert function is
additive, it suffices to handle the case F = S and M = I, where I is a monomial ideal.
Choosing one of the monomial generators f of I, and letting I ′ be the monomial ideal generated
by the remaining generators, we have the following graded exact sequence:

0→ S/(I ′ : f)(−d)
.f−→ S/I ′ → S/I → 0,
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where d is the degree of f . If I ′ = (f1, f2. . . . , ft), then

(I ′ : f) = (f1/GCD(f1, f), f2/GCD(f2, f), . . . , fn/GCD(ft, f)).

For every integer n,
HS/I(n) = HS/I′(n)−HS/(I′:f)(n).

Note that both I ′ and (I ′ : f) have fewer minimal generators than I, and hence, using induction,
we can compute an expression for the Hilbert function or polynomial of I.
By choosing f sensibly, we can make the process much faster: If f contains the largest power of
some variable x1 of any of the minimal generators of I, then the minimal generators of the resulting
ideal (I ′ : f) will not involve x1 at all. They will thus involve strictly fewer of the variables than
the number involved in the minimal generators of I.

2.2 Syzygies of Monomial Submodules

Let F be a free module and let M be a submodule of F generated by monomials m1, . . . ,mt.
Define

φ : ⊕tj=1Sεj → F ;φ(εj) = mj.

For each pair of indices i, j such that mi and mj involve the same basis element of F , we define

mij = mi/GCD(mi,mj),

and we define σij to be the element of ker(φ) given by

σij = mjiεi −mijεj.

Lemma 2.2.1. With notation as above, ker(φ) is generated by the set of all σij, wherever defined.

Proof. As a vector space over k, ker(φ) = ⊕f ker(φ)f , where

ker(φ)f =

{∑
i

aifiεi ∈ ker(φ) : mi divides f, fi = f/mi, ai ∈ k

}
.

Indeed, let

σ =
∑
i

piεi ∈ ker(φ).

For any monomial f that occurs in one of the pjmj, and for each i, let pi,f be the term of pi such
that pi,fmi is a scalar times f . Then,∑

i

pimi = 0 =⇒
∑
i

∑
f

pi,fmi = 0 =⇒
∑
f

∑
i

pi,fmi = 0 =⇒ ∀f,
∑
i

pi,fmi = 0.
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Therefore, for all monomials f ,
∑

i pi,fεi ∈ ker(φ).
We may now assume σ =

∑
i aifiεi for some monomial f of F . If σ = 0, σ lies in the module

generated by σij. If σ 6= 0, at least two of the aifi must be non-zero, since
∑

i aifimi = 0.
This implies that for some i, j, both mi and mj must divide f and in fact, mifi = mjfj = f ,
which implies that mji = mj/GCD(mi,mj) divides fi. Let k = fi/mji, then kσij ∈ ker(φ)f , and
σ− aikσij has fewer non-zero terms than σ. Hence, the proof is complete by induction on number
of non-zero terms of σ.

Example 2.2.2. Let S = k[x, y], F = S2, M = 〈(x2, 0), (0, xy), (0, y3)〉. Then we have

φ : ⊕3
j=1Sεj → F ;φ(ε1) = (x2, 0), φ(ε2) = (0, xy), φ(ε3) = (0, y3).

Suppose for some a1, a2, a3 ∈ S, φ(a1ε1 + a2ε2 + a3ε3) = 0, then we have (a1x
2, a2xy + a3y

3) = 0,
and hence, a1 = 0, a2 = by2, a3 = −bx. Thus, a1ε1 + a2ε2 + a3ε3 = b(0, y2 − x) = bσ23.

2.3 Monomial Orders

Let I be an ideal of S, J be a monomial ideal of S and B be the set of all monomials not in J .
Then, the elements of B are k-linearly independent modulo I if and only if J contains at least one
monomial from every polynomial in I.
Indeed, suppose J contains no monomial of f ∈ I, f 6= 0. Then f ∈ Span(B)∩I, which implies that
the elements of B are linearly dependent modulo I. Conversely, suppose there exist a1, . . . , an ∈ k
and m1, . . . ,mn ∈ B such that

∑n
i=1 aimi ∈ I, then

∑n
i=1 aimi is a polynomial in I for which no

monomials belong to J .
Moreover, if B is a basis of S/I, J must be a minimal monomial ideal containing at least one
monomial from every polynomial in I. Indeed, suppose J contains at least one monomial from
each polynomial in I, but is not a minimal ideal satisfying this condition. Let J1 ( J satisfying
the condition, and let f ∈ J \ J1, where f is a monomial. Suppose f ∈ Span(B), that is, there
exist a1, . . . , an ∈ k and m1, . . . ,mn ∈ B such that f −

∑n
i=1 aimi ∈ I. Since J1 contains at least

one monomial of every polynomial in I, we have a contradiction. Hence, B cannot span S/I if J
is not the minimal monomial ideal containing one monomial from each polynomial in I.

Definition 2.3.1. Let F be a free S-module. A monomial order on F is a total order τ on the
monomials of F such that the following two conditions are satisfied:
(i) if m1 is a monomial of F and f 6= 1 is a monomial of S, then fm1 >τ m1.
(ii) if m1, m2 are monomials of F and f 6= 1 is a monomial of S, then m1 >τ m2 implies
fm1 >τ fm2.

Lemma 2.3.2 (Well-Ordering Property). Let F be a free S-module. The set of monomials in F
is well-ordered with respect to any monomial order, that is, every non-empty subset of monomials
in F has a least element.
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Proof. Let X ⊆ F be a set of monomials. Since S is Noetherian, the submodule of F generated
by X must be generated by a finite subset of X, say, Y . Since Y is a finite set of monomials, it
must have a least element with respect to a monomial order. The least element of Y must be the
least element of X because every element of X is an element in Y multiplied by a monomial in
S.

We will extend this notation to terms: If um1 and vm2 are terms with 0 6= u, v ∈ k, and m1,m2

are monomials with m1 >τ m2 then we say um1 >τ vm2.

Definition 2.3.3. Let F be a free S-module and τ be a monomial order on F . For any f ∈ F ,
we define the initial term of f , denoted by inτ (f) to be the greatest term of f with respect to the
order τ . Given a submodule M of F , define the initial submodule of M , denoted by inτ (M), to
be the monomial submodule generated by inτ (f) for all f ∈M .

Theorem 2.3.4 (Macaulay). Let F be a free S-module and M be a submodule of F . For any
monomial order τ on F , the set B of all monomials not in inτ (M) forms a k-basis for F/M .

Proof. Suppose the set B is not linearly independent. Then there exist distinct m1, . . . ,mt ∈ B
and (a1, . . . , at) ∈ kt\{0} such that f := a1m1 + · · ·+ atmt ∈M . Since in(f) ∈ in(M), there must
exist i ∈ {1, . . . , t} such that mi ∈ in(M), which is a contradiction.
Suppose B does not span F/M . Let f ∈ F\(M + Span(B)) such that f has minimal initial
term among all elements of F\(M + Span(B)). We can choose such an f by the well-ordering
property. If in(f) ∈ Span(B), f − in(f) ∈ F\(M + Span(B)) has smaller initial term than f .
Hence, in(f) ∈ in(M). However, this implies that there exists g ∈M such that in(f) = in(g), and
f − g ∈ F\(M + Span(B)) has smaller initial term than f , leading to a contradiction.

Corollary 2.3.5. Given F,M, τ as above, dimk(F/M) = dimk(F/inτ (M)).

Corollary 2.3.6. Given monomial orders τ, γ on S and an ideal I ∈ S such that inτ (I) ⊂ inγ(I),
we have inτ (I) = inγ(I).

Proof. If inτ (I) ( inγ(I), the set of monomials in S\inγ(I) is a proper subset of the set of mono-
mials in S\inτ (I). However, both these sets of monomials form a K-basis of S/I, which is a
contradiction.

Here are some important examples of monomial orders when F = S. Let a = (a1, . . . , ar), b =
(b1, . . . , br) and m = xa,m′ = xb

Lexicographic order: m >lex m
′ if and only if ai > bi for the smallest i such that ai 6= bi.

Graded lexicographic order: m >grlex m
′ if and only if deg(m) > deg(n) or deg(m) = deg(n)

and ai > bi for the smallest i such that ai 6= bi.
Reverse graded lexicographic order: m >grevlex m′ if and only if deg(m) > deg(n) or
deg(m) = deg(n) and ai < bi for the largest i such that ai 6= bi.
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Remark 2.3.7. A “reverse lexicographic order” is not a monomial order, because 1 is not the
least monomial. In fact, 1 is the largest monomial.

Theorem 2.3.8. Every ideal I ⊂ S = k[x1, . . . , xn] has only finitely many distinct initial ideals.

Proof. Suppose I has an infinite set Σ0 of distinct initial ideals. Choose f1 ∈ I, f1 6= 0. Since f1

has only finitely many terms and since each element of Σ0 contains at least one term of f1, there
exists a monomial m1 in f1 such that the set Σ1 := {J ∈ Σ0 : m1 ∈ J} is infinite. Hence, 〈m1〉 is
strictly contained in an initial ideal of I, and by Theorem 2.3.4, the monomials outside 〈m1〉 are
k-linearly dependent modulo I. Thus, there exists a non-zero polynomial f2 ∈ I none of whose
terms lies in 〈m1〉. Since f2 has finitely many terms, there exists a monomial m2 in f2 such that
the set Σ2 := {J ∈ Σ1 : m1 ∈ J} is infinite. Hence, 〈m1,m2〉 is strictly contained in an initial ideal
of I, and by Theorem 2.3.4, the monomials outside 〈m1,m2〉 are k-linearly dependent modulo I.
Thus, there exists a non-zero polynomial f3 ∈ I none of whose terms lies in 〈m1,m2〉. Now we
can choose a monomial m3 in f3 such that the set Σ3 := {J ∈ Σ2 : m1 ∈ J} is infinite. Iterating
this construction, we obtain an infinite strictly increasing chain of ideals in S:

〈m1〉 ⊂ 〈m1,m2〉 ⊂ 〈m1,m2,m3〉 ⊂ . . .

Since S is Noetherian, we have a contradiction.

Definition 2.3.9. A finite subset U ∈ I is called a universal Gröbner basis if U is a Gröbner basis
if U is a Gröbner basis of I with respect to all monomial orders.

Theorem 2.3.10. Every ideal S possesses a finite universal Gröbner basis U .

Proof. By Theorem 2.3.8, there are only finitely many distinct initial ideals of I. We can choose a
reduced Gröbner basis for each initial ideal of I. Their union is finite, and is a universal Gröbner
basis for I.

Definition 2.3.11. A Gröbner basis with respect to an order τ on a free module F is a set
of elements g1, . . . , gt ∈ F such that if M is the submodule of F generated by g1, ..., gt, then
inτ (g1), ..., inτ (gt) generate inτ (M). We then say that g1, ..., gt is a Gröbner basis of M .

There is a Gröbner basis of any submodule M of F , with respect to any monomial order: if
g1, . . . , gt is a set of generators of M which is not a Gröbner basis, we can adjoin gt+1, . . . , gt′ until
in(g1), . . . , in(gt′) generate in(M) (note that the Hilbert basis theorem implies that this can be
done).

Lemma 2.3.12. Let N ⊂M ⊂ F be submodules such that in(N) = in(M) with respect to a given
monomial order. Then, N = M .

Proof. Suppose N 6= M , then, by the well-ordering property, there exists f ∈ M\N such that
f has the least initial term among all the elements of M not in N . Since f ∈ M , we have
in(f) ∈ in(M) = in(N), which implies the existence of g ∈ N such that in(f) = in(g). Note that
f − g ∈M\N , but has smaller initial term than f , which is a contradiction to the choice of f .

The above lemma tells us that if 〈in(g1), . . . , in(gt)〉 = in(M) for g1, . . . , gt ∈M , then 〈g1, . . . , gt〉 =
M . This follows since 〈in(g1), . . . , in(gt)〉 ⊂ in(〈g1, . . . , gt〉) ⊂ in(M).
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2.4 Computing Syzygies

Proposition 2.4.1 (Division Algorithm). Let F be a free S-module with monomial order τ . If
f, g1, ..., gt ∈ F , then there is an expression

f =
t∑
i=1

figi + f ′ with f ′ ∈ F, fi ∈ S,

where none of the monomials of f ′ is in 〈in(g1), . . . , in(gt)〉 and in(f) ≥τ in(figi) for every i.

Definition 2.4.2. With notation as above, any such f ′ is called a remainder of f with respect
to g1, ..., gt, and an expression f =

∑
figi + f ′ satisfying the condition of the proposition is called

a standard expression for f in terms of the gi.

The proof outlines an algorithm to attain a standard expression for any f ∈ F .

Proof. If f, g1, . . . , gt ∈ F , then we may produce a standard expression

f =
∑

mugsu + f ′

for f with respect to g1, . . . , gt by defining the indices su and the terms mu inductively. Having
chosen s1, . . . , sp and m1, . . . ,mp, if

f ′p := f −
p∑

u=1

mugsu 6= 0

and m is the maximal term of f ′p; that is divisible by in(gi) for some i, then choose sp+1 = i,mp+1 =
m/in(gi). This process terminates when either f ′p = 0 or no in(gi) divides a monomial of f ; the
remainder f ′ is then the last f ′p produced.
Note that the well-ordering property guarantees that this process must terminate, because the
maximal term of f ′p divisible by some gi decreases at each step.

Fix the following notation:
Let F be a free module over S with monomial order τ . Let g1, . . . , gt be non-zero elements of F ,
and let ⊕Sεi be a free module with basis {ε1, . . . , εt}.
For two terms m1,m2 ∈ F , m1 < m2 denotes that the monomial corresponding to m1 is less than
the monomial corresponding to m2 with respect to the order τ .
For each pair of indices i, j such that in(gi) and in(gj) involve the same basis element of F , we
define

mij = in(gi)/GCD(in(gi), in(gj)) ∈ S,

and we set σij = mjiεi −mijεj for i < j.

15



For each such pair i, j, choose a standard expression

mjigi −mijgj =
t∑

u=1

f (ij)
u gu + hij

for mjigi −mijgj with respect to g1, . . . , gt. Note that in(f
(ij)
u gu) < in(mjigi).

Set hij = 0 if in(gi) and in(gj) involve different basis elements of F .
Define φ : ⊕Sεi → F , φ(εi) = gi. Then, the set of σij generate the syzygies on the module
generated by the elements in(gi) (by Lemma 2.2.1). Note that φ(σij) = mjigi −mijgj.

Theorem 2.4.3 (Buchberger’s Criterion). The elements g1, . . . , gt form a Gröbner basis if and
only if hij = 0 for all i and j.

Proof. Let M = 〈g1, . . . , gt〉 ⊂ F . The expression for hij implies that hij ∈ M , and hence
in(hij) ∈ in(M). However, if g1, . . . , gt is a Gröbner basis, the definition of a standard expression
forces hij = 0 for all i, j.
Conversely, suppose that hij = 0 for all i, j. Let f =

∑t
i=1 higi ∈ M , where, among all possible

h1, . . . , ht such that f =
∑t

i=1 higi, h1, . . . , ht are chosen such that max{in(higi) : 1 ≤ i ≤ t} is
minimal. We prove that in(f) ∈ 〈in(g1), . . . , in(gt)〉.
If in(f) = in(higi) for some i, in(gi)|in(f)⇒ in(f) ∈ 〈in(g1), . . . , in(gt)〉.
Hence, let in(f) < max{in(higi) : 1 ≤ i ≤ t} = m. Define an equivalence relation ≡ on terms
as follows: m1 ≡ m2 if there exists λ ∈ k\{0} such that m1 = λm2. Without loss of generality,
suppose in(higi) ≡ m for i = 1, . . . , t1 and in(higi) < m for i = t1 + 1, . . . , t

f =
t∑
i=1

higi =

t1∑
i=1

higi +
t∑

i=t1

higi

=

t1∑
i=1

in(hi)gi +

t1∑
i=1

(hi − in(hi))gi +
t∑

i=t1+1

higi.

Note that
∑t1

i=1 in(hi)in(gi) = 0.
Define φ1 : ⊕Sεj →M,φ1(εj) = in(gj) and φ2 : ⊕Sεj →M,φ2(εj) = gj. Note that

∑t1
i=1 in(hi)εi ∈

ker(φ1). Therefore, by Lemma 2.2.1,

t1∑
i=1

in(hi)εi =
∑
i<j

kijσij,
1

where kij = aijm/LCM(in(gi), in(gj)) for some aij ∈ k.
Note that φ2(

∑t1
i=1 in(hi)εi) =

∑t1
i=1 in(hi)gi.

1let kij = 0 and σij = 0 for i, j where σij is not originally defined
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Hence,
t1∑
i=1

in(hi)gi =
∑
i<j

kij(mjigi −mijgj) =
∑
i<j

kij

t∑
u=1

f (ij)
u gu,

since hij = 0 for all i, j. Note that since in(f
(ij)
u gu) < in(mjigi), we have in(kijf

(ij)
u ) < m.

Hence, we have an expression for f =
∑

i h
′
igi, where max{in(h′igi) : 1 ≤ i ≤ t} < m, which is a

contradiction.

This result gives us an effective method for computing Gröbner bases.

Buchberger’s Algorithm: In the situation of Theorem 2.4.3, suppose that M is a submodule
of F , and let g1, . . . , gt ∈ M be a set of generators of M . Compute the remainders hij. If all the
hij = 0, then {g1, . . . , gt} forms a Gröbner basis of M . If some hij 6= 0, then replace g1, . . . , gt
with g1, . . . , gt, hij, and repeat the process. As the submodule generated by the initial forms of
g1, . . . , gt, hij is strictly larger than that generated by the initial forms of g1, . . . , gt, this process
must terminate after finitely many steps.

The next theorem shows that if {g1, . . . , gt} is a Gröbner basis of M , the equations hij = 0 generate
the first syzygy of M .
For i < j such that in(gi) and in(gj) involve the same basis element of F , we set

wij = mjiεi −mijεj −
t∑

u=1

f (ij)
u εu.

Let W be the set of all such wij.

Theorem 2.4.4 (Schreyer). With notation as above, suppose that {g1, . . . , gt} is a Gröbner basis
of M . Let γ be the monomial order on ⊕tj=1Sεj defined by taking mεu > nεv if and only if

in(mgu) >τ in(ngv) with respect to the given order τ on F

or
in(mgu) ≡ in(ngv), but u < v.

W generates the first syzygy of M . Moreover, W forms a Gröbner basis of the syzygies with respect
to the order γ, and inγ(wij) = mjiεi.

Proof. We first prove that inγ(wij) = mjiεi. Since

in(mjigi) = in(mijgj),

and these terms are by hypothesis greater than any that appear in the
∑t

u=1 f
(ij)
u gu, in(wij) must

be either mjiεi or −mijεj. Since i < j, inγ(wij) = mjiεi.
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To show that W forms a Gröbner basis, let w =
∑t

i=1 fiεi. Let in(fi) = hi for all i. The theorem
is proved once we show that inγ(w) ∈ 〈inγ(v) : v ∈ W 〉. Note that inγ(w) = inγ(fjεj) = hjεj for
some j. Let

σ =
∑

i:hiin(gi)≡hjin(gj)

fiεi.

σ is a syzygy on {in(gi) : i ≥ j}, because if hiin(gi) ≡γ hjin(gj), we must have i ≥ j. Hence, by
Lemma 2.2.1, σ is generated by σuv for u, v ≥ j, and εj only appears in σjv for j < v. This implies
that hj is a k-linear combination of {mvj : j < v} and thus, inγ(w) is a k-linear combination of
{mvjεj : j < v}, which proves the theorem.

Corollary 2.4.5. With notation as in Theorem 2.4.4, suppose that the gi are arranged such that
whenever in(gi) and in(gj) involve the same basis vector e of F , say in(gi) = mie, in(gj) = mje
with mi,mj ∈ S,

i < j =⇒ mi > mj in lexicographic order.

If the variables x1, . . . , xs are missing from in(gi) for all i, then the variables x1, . . . , xs+1 are
missing from inγ(wij) for all i < j for which wij is defined. Further, F/〈g1, . . . , gt〉 has a free
resolution of length ≤ r − s.

Proof. If the variables x1, . . . , xs are missing from in(gi) for all i, then, due to the stipulated
arrangement of {g1, . . . , gt}, for i < j such that in(gi) and in(gj) involve the same basis element,
the variable xs+1 must appear in gi with at least as high a power as in gj. As a result, the variable
xs+1 does not appear in mji, and hence, does not appear in inγ(wij) = mjiεi.
We now show that F/(g1, . . . , gt) has a free resolution of length ≤ r − s by induction on r − s.
Suppose first that r − s = 0, so that none of the variables x1, . . . , xr appears in the terms in(gi).
Since none of the variables appear in in(gi) for all i, in(gi) must be a scalar times a basis element
of F . Let F ′ be the free submodule spanned by all the ej which do not appear in in(gi) for any i.
By Theorem 2.3.4, F ′ is isomorphic to F/(g1, . . . , gt).
Suppose r − s > 0. By the first statement of the theorem, the variables x1, . . . , xs+1 are missing
from inγ(wij) for all i, j. Order the wij to satisfy the same hypothesis as on the gi. Then, by the
induction hypothesis, F/〈W 〉 has a free resolution of length ≤ r− s− 1. Combining this with the
natural map φ : ⊕Sεi → F , we get a free resolution of F/〈g1, . . . , gt〉 of length ≤ r − s.

Example 2.4.6. Let F = S and I = 〈x3−yz, y2−xz, x2y−z2〉. Let g1 = x3−yz, g2 = y2−xz, g3 =
x2y − z2. In this example, we consider the lexicographic order on S. Thus, we have

in(g1) = x3, in(g2) = −xz, in(g3) = x2y.

Let Sij = mjigi = mijgj. Then,

S12 =
−xz
x

(x3 − yz)− x3

x
(y2 − xz)

= yz2 − x2y2

= −yg3,
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and hence, h12 = 0. Similarly, S23 = xy3 − z3 = h23. Thus, we add g4 = h23 to the original basis
{g1, g2, g3}. For the basis {g1, g2, g3, g4}, we immediately have h12 = h23 = 0. Calculation also
reveals that S13 = −zg2 and S14 = −z(y2 + xz)g2, which implies that h13 = h14 = 0. However,
S24 = y5 − z4 = h24. For the new basis {g1, g2, g3, g4, g5}, where g5 = y5 − z4, we instantly have
h12 = h23 = h13 = h14 = h24 = 0. Further,

S34 = −z2g2, S15 = −z(y4 + xy2z + x2z2)g2, S25 = z4g2 + y2g5, S35 = −z2(y2 + xz)g2, S45 = −z3g2.

This shows that {g1, g2, g3, g4, g5} is a Gröbner basis of I.
Rearranging the basis to satisfy the hypothesis of the corollary, we have I = 〈x3 − yz, x2y −
z2, xy3 − z3, xz − y2, y5 − z4〉. Hence,

w12 = yε1 − xε2 − zε4
w13 = y3ε1 − x2ε2 − zε4
w14 = zε1 − x2ε4 − z(y2 + xz)ε4

w15 = y5ε1 − x3ε5 − z(y4 + xy2z + x2z2)ε4

w23 = y2ε2 − xε3 − z2ε4

w24 = zε2 − xyε4 − ε3
w25 = y4ε2 − x2ε5 − z2(y2 + xz)ε4

w34 = zε3 − y3ε4 + ε5

w35 = y2ε3 − xε5 − z3ε4

w45 = (y5 − z4)ε2 + (y2 − xz)ε5

Note that x is missing from the initial terms of all the wij, as it should be, according to the
previous corollary.

As a corollary, we get the following famous theorem by Hilbert.

Theorem 2.4.7 (Hilbert’s Syzygy Theorem). Let M be a finitely generated S-module, where
S = k[x1, . . . , xr]. Then, pdim(M) ≤ r.
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Chapter 3

Ideals and related objects

3.1 Homological invariants of initial ideals

3.1.1 Gradings defined by weights

Definition 3.1.1. Let w = (w1, . . . , wr) ∈ Nr. We call this vector a weight and set degw xi = wi
for i = 1, . . . , n. Then, for (a1, . . . , ar) ∈ Nr,

degw x
a1
1 . . . xarr =

r∑
i=1

aiwi.

A polynomial f ∈ S is called homogeneous of degree j with respect to the weight w if the degree
of all homogeneous components of f is j.

Fix a weight w and let Sj be the k-vector space spanned by all homogeneous polynomials of degree
j. Then, Sj is finite dimensional and the monomials u with degw u = j form a k-basis. It follows
that

S = ⊕jSj.
Thus, note that we have defined a new grading on S.

Definition 3.1.2. Each polynomial f ∈ S can be uniquely written as f =
∑

j fj with fj ∈ Sj.
The summands fj are called the homogeneous components of f with respect to w.
The degree of f with respect to w is defined to be degw f = max{j : fj 6= 0}, and if i = degw f ,
then fi is called the initial term of f with respect to w and is denoted by inw(f).

Note that inw(f) need not be a monomial.

Definition 3.1.3. Let I ⊂ S be an ideal. We define the initial ideal of I with respect to w as

inw(I) = 〈inw(f) : f ∈ I〉.

A set of polynomials f1, . . . , fn ∈ I such that inw(I) = 〈inw(f1), . . . , inw(fn)〉 is called a standard
basis of I with respect to w.
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The following lemma shows that a standard basis of I with respect to a weight generates I.

Lemma 3.1.4. Let J ⊂ I be ideals in S. If inw(J) = inw(I), then I = J .

Proof. Suppose I 6= J . Let f ∈ I\J such that degw f is minimum among all elements in I\J .
Since inw(f) ∈ inw(I) = inw(J) and inw(J) is a homogeneous ideal with respect to the grading
given by w, there must exist g ∈ J such that inw(f) = inw(g). Note that f − g ∈ I\J , and
degw(f − g) < degw(f), which is a contradiction.

The following lemma is proved in [12].

Lemma 3.1.5. Given a monomial order τ and pairs of monomials (g1, h1), . . . , (gm, hm) such that
gi >τ hi for all i, there exists a weight w such that degw gi > degw hi for all i.

Theorem 3.1.6. Given an ideal I and a monomial order τ , there exists a weight w such that
inτ (I) = inw(I).

Proof. Let {g1, . . . , gn} be a Gröbner basis of I with respect to the monomial order τ . For all i,
define Ki to be the set of all monomials appearing in gi, and denote the monomial corresponding
to inτ (gi) as mi. Define K = ti(gi, Ki\{mi}) ∈ S2. By the previous lemma, there exists a weight
w such that g > h for all (g, h) ∈ K. Observe that inw(gi) = inτ (gi) for all I. Hence,

inτ (I) = 〈inτ (g1), . . . , inτ (gn)〉 ⊂ inw(I).

Define a monomial order τw as m1 <τw m2 if (i) degw(m1) < degw(m2) or (ii) degw(m1) =
degw(m2) and m1 <τ m2. Thus, we have

inτ (I) = inτ (inτ (I)) ⊂ inτ (inw(I)) = inτw(I).

Corollary 2.3.6 implies that inτ (I) = inτw(I). We show that inτw(I) ⊃ inw(I) to complete the
proof.
Observe that inτw(gi) = inτ (gi) = inw(gi) for all i and hence, {g1, . . . , gn} is a Gröbner basis of I
with respect to τw as well.
Let f ∈ I and f = f1g1 + · · ·+ fngn be a standard expression for f in terms of {g1, . . . , gn}. Since
inτw(f) ≥τw inτw(figi) for all i, we have degw f ≥ degw(figi). Let L = {i ∈ {1, . . . , n} : degw f =
degw(figi)}. Then,

inw(f) =
∑
i∈L

inw(figi) =
∑
i∈L

inw(fi)inw(gi) =
∑
i∈L

inw(fi)inτw(gi) ∈ inτw(I).
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3.1.2 Homogenization

Definition 3.1.7. Fix a weight w. Let f be a non-zero polynomial in S with homogeneous com-
ponents fj (with respect to the weight w). We introduce a new variable t and define the homog-
enization of f with respect to w as the polynomial

fh =
∑
j

fjt
degw f−j ∈ S[t].

Note that fh is homogeneous in S[t] with respect to the extended weight (w1, . . . , wr, 1) ∈ Nr+1.

Definition 3.1.8. Let I ⊂ S be an ideal. The homogenization of I is defined to be the ideal

Ih = 〈fh : f ∈ I〉 ⊂ S[t].

For any homogeneous polynomial g ∈ S[t], let g denote the polynomial in S obtained by substi-
tuting t = 1.

Lemma 3.1.9. Let f ∈ S[t] be homogeneous with respect to the weight (w1, . . . , wr, 1). Then f ∈ Ih

iff f = tngh for some g ∈ I and some n ∈ Z≥0. Further, in this case, g = f
h
.

Proof. It is clear that f ∈ Ih if f = tngh for some g ∈ I and some n ∈ Z+.
Suppose f ∈ Ih is homogeneous. Then, there exist f1, . . . , fs ∈ I and g1, . . . , gs ∈ S[t] such that
f =

∑s
i=1 gif

h
i .

We have

f =
s∑
i=1

gifhi =
s∑
i=1

gifi ∈ I.

We claim that f = tnf
h

for some non-negative integer n. To observe this, let f = gl(x1, . . . , xr)t
l+

· · ·+ gk(x1, . . . , xr)t
k such that l ≤ k and gl, gk 6= 0. Then, f = gl(x1, . . . , xr) + · · ·+ gk(x1, . . . , xr)

and
f
h

= gl(x1, . . . , xr) + gl+1(x1, . . . , xr)t+ · · ·+ gk(x1, . . . , xr)t
k−l,

which implies that f = tlf
h

and completes the proof.

Remark 3.1.10. Observe that in the above proof, we have also shown that if f is homogeneous
in Ih, then f ∈ I.

Definition 3.1.11. A monomial order τ on S is said to respect w if for all m1,m2 ∈ S such that
degwm1 < degwm2, we have m1 <τ m2.

Example 3.1.12. The graded lexicographic order and reverse graded lexicographic order respect
the standard grading on S. More generally, the order <w respects w.

For a monomial order τ which respects w, define a natural extension τ ′ to S[t] as follows: xatc <τ ′

xbtd iff (i) xa <τ x
b or (ii) xa = xb and c < d, where, as usual, xa denotes xa11 . . . xarr .

This monomial order has the property that inτ (g) = inτ ′(g
h) for all non-zero g ∈ S.
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Proposition 3.1.13. Let I ⊂ S be an ideal, and let {g1, . . . , gn} be a Gröbner basis of I with
respect to a monomial order τ which respects w. Then, {gh1 , . . . , ghn} is a Gröbner basis of Ih with
respect to τ ′.

Proof. Note that since Ih is a homogeneous ideal with respect to the extended weight (w1, . . . , wr, 1),
it is sufficient to prove that if f ∈ Ih is homogeneous with respect to (w1, . . . , wr, 1), then
inτ ′(f) ∈ 〈inτ ′(gh1 ), . . . , inτ ′(g

h
n)〉.

Let f ∈ Ih, be homogeneous. Then, by the previous lemma, there exist g ∈ I and m ∈ Z+ such
that f = tmgh. Hence,

inτ ′(f) = tminτ ′(g
h) = tminτ (g).

There exist u ∈ S and i ∈ {1, . . . , n} such that inτ (g) = uinτ (gi) = uinτ ′(g
h
i ). Thus, inτ ′f =

utminτ ′(g
h
i ).

Proposition 3.1.14. Given an ideal I ⊂ S, S[t]/Ih is a free k[t]-module.

Proof. Let {g1, . . . , gn} be a Gröbner basis of I with respect to a monomial order τ graded with
respect to w. Then, {gh1 , . . . , ghn} is a Gröbner basis of Ih with respect to τ ′. It follows from
Theorem 2.3.4 that the set of all monomials in S[t] not in 〈inτ ′(gh1 ), . . . , inτ ′(g

h
n)〉 forms a k-basis of

S[t]/Ih. Since inτ ′(g
h
i ) = inτ (gi), we have 〈inτ ′(gh1 ), . . . , inτ ′(g

h
n)〉 = 〈inτ (g1), . . . , inτ (gn)〉S[t] and

hence, the set of all monomials in S not in 〈inτ (g1), . . . , inτ (gn)〉 forms a k[t]-basis of S[t]/Ih.

Lemma 3.1.15. Let R be a ring and consider φ : R[t]→ R, a ring homomorphism with φ|R = Id,
or equivalently, an R-linear ring homomorphism. Given an ideal I ∈ R[t], φ naturally induces
an R-linear ring homomorphism φ : R[t]/I → R/φ(I) given by φ(f) = φ(f), and ker(φ) =
(t− φ(t))R[t]/I.

Proof. Clearly, φ(f) is well-defined and (t− φ(t))R[t]/I ⊂ ker(φ).
Let f ∈ R[t] such that f ∈ ker(φ). There exist a ∈ R and g ∈ R[t] such that f = a+ (t− φ(t))g,
which implies that φ(f) = a. Thus, we have a ∈ φ(I). Let h ∈ I such that φ(h) = a, that is,
h = a+ (t− φ(t))h′. Then,

f − h ∈ (t− φ(t))R[t] =⇒ f ∈ I + (t− φ(t))R[t],

which completes the proof.

Proposition 3.1.16. Given an ideal I ⊂ S and a weight w on S, we have the following S-linear
ring isomorphisms:

S[t]/Ih

tS[t]/Ih
∼= S/inw(I) and

S[t]/Ih

(t− a)S[t]/Ih
∼= S/I ∀a ∈ S \ {0}.

Proof. For all a ∈ k, define an S-linear map φa : S[t] → S as φa(1) = 1 and φa(t) = a. We claim
that φ0(Ih) = inw(I).
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Given f ∈ I, φ0(fh) = inw(f). Since Ih = 〈fh : f ∈ I〉, it follows that φ0(Ih) = inw(I). From the

previous lemma, we have S[t]/Ih

tS[t]/Ih
∼= Sinw(I).

For a 6= 0, define a ring homomorphism ψa : S → S as ψa(xi) = awixi for all i and ψa|k = Id.

We claim that ψaφa(I
h) = I. Then, according to the previous lemma, S[t]/Ih

(t−a)S[t]/Ih
∼= S/φa(I

h) as

S-modules and since a 6= 0, ψa is a ring isomorphism and S/φa(I
h) ∼= S/I as rings.

By Proposition 3.1.13, there exists a Gröbner basis {g1, . . . , gn} of I such that {gh1 , . . . , ghn} is a
Gröbner basis of Ih. Let gi =

∑
j gij where gij denotes the homogeneous component of gi of degree

j (with respect to w). Then,

φa(g
h
i ) =

∑
j

adegw gi−jgij,

and
ψa(φa(g

h
i )) = adegw gigi.

Since a 6= 0, we are done.

We now compare the Betti numbers of an ideal with those of its initial ideal.
Let I ⊂ S be a graded ideal with respect to the standard grading on S, and fix a weight w on
S. Let {g1, . . . , gn} be a Gröbner basis of I with respect to a monomial order which respects w,
and further, such that gi is homogeneous with respect to the standard grading for all i. Then,
{gh1 , . . . , ghn} is a system of generators (in fact, a Gröbner basis) of Ih.
If we assign to each xi the bidegree (wi, 1) and to t the bidegree (1, 0), then all the generators ghi
are bihomogeneous, and hence Ih is a bigraded ideal. Therefore S[t]/Ih has a bigraded minimal
free S[t]-resolution,

F• : 0→ Fp → Fp−1 → · · · → F0 → S[t]/Ih → 0,

where Fi = ⊕j,k(S[t](−k,−j))βijk . Note that the minimality of the resolution is equivalent to the
condition that all entries in the matrices describing the maps must belong to 〈x1, . . . , xr, t〉.
Note that as S[t]/Ih is a free k[t]-module, t− a is a non-zero divisor on S[t]/Ih for all a ∈ k. Since
t is a non-zero divisor on S[t]/Ih and on S[t], and t ∈ 〈x1, . . . , xr, t〉, F•/tF• is a bigraded minimal

free S-resolution of S[t]/Ih

tS[t]/Ih
∼= S/inw(I). Observe that the bigraded shifts of F•/tF• are the same as

those in F• and in particular, the second component of the shifts in the resolution are the ordinary
shifts of the standard graded ideal inw(I). Thus, we have

βij(S/inw(I)) =
∑
k

βijk for all i, j.

On the other hand, since t− 1 is also a non-zero divisor on S[t]/Ih and on S[t], F•/(t− 1)F• is a

free S-resolution of S[t]/Ih

(t−1)S[t]/Ih
∼= S/I. Note that t− 1 is homogeneous with respect to the second

component of the bidegree and hence the second components of the shifts in the resolution F• are
preserved. However, t− 1 does not belong to 〈x1, . . . , xr, t〉 and hence F•/(t− 1)F• need not be a
minimal resolution. Therefore, we have

βij(S/I) ≤
∑
k

βijk for all i, j.
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We have thus proved the following theorem.

Theorem 3.1.17. Let I ⊂ S be a graded ideal and w be a weight. Then

βij(I) ≤ βij(inw(I)) for all i, j.

Theorem 3.1.17 and Thereom 3.1.6 yield the following corollary.

Corollary 3.1.18. Let I ⊂ S be a graded ideal and τ be a monomial order on S. Then

βij(I) ≤ βij(inτ (I)) for all i, j.

Once the Castelnuovo-Mumford regularity is introduced later, the following result follows imme-
diately from Corollary 3.1.18.

Corollary 3.1.19. Let I ⊂ S be a graded ideal and τ be a monomial order on S. Then reg(I) ≤
reg(in(I)).

Corollary 3.1.20. Given I, τ as above,
(i) pdim(S/I) ≤ pdim(S/inτ (I));
(ii) depth(S/I) ≥ depth(S/inτ (I)).

Proof. Corollary 3.1.18 directly implies (a). (b) follows from (a) and the Auslander-Buchsbaum
formula.

Proposition 3.1.21. Let I ⊂ S be a graded ideal. Then,
(i) If inw(I) is a prime ideal, so is I.
(ii) If inw(I) is a radical ideal, so is I.

Proof. Let Ih ∈ S[t] be the homogenization of I with respect to the weight w. We claim that I is
prime (resp. radical) if Ih is prime (resp. radical).
φ(fh) = tdegw ff .
Suppose Ih is prime. Consider f, g ∈ S\{0} such that fg ∈ I. Then, (fg)h = fhgh ∈ Ih, which
implies that fh ∈ Ih or gh ∈ Ih. Without loss of generality, let fh ∈ Ih. Then, by Remark 3.1.10,
note that f = (fh) ∈ I.
Similarly, suppose Ih is radical. Consider f ∈ S\{0} such that fn ∈ I for n ∈ N. Then,
(fn)h = (fh)n ∈ Ih and hence, fh ∈ Ih. Proceeding as above, we have f ∈ I.
The following lemma along with Proposition 3.1.16 proves that if inw(I) is prime (resp. radical),
so is Ih.

Lemma 3.1.22. Let R be a finitely generated positively graded k-algebra and let s ∈ R be a
homogeneous non-zero divisor of R such that R/sR is a domain (resp. a reduced ring) and deg(s) >
0. Then R is also a domain (resp. a reduced ring).

Proof. Suppose R/sR is a domain and there exist a, b ∈ R\{0} such that ab = 0. By the Krull
Intersection Theorem, ∩k≥0〈s〉k = 0 and hence, there exist na, nb ∈ Z≥0 such that a ∈ 〈s〉na , b ∈
〈s〉nb and a 6∈ 〈s〉na+1, b 6∈ 〈s〉nb+1. Let a = a′sna , b = b′snb where a′, b′ 6∈ 〈s〉. Then, a′b′ = 0 and
hence a′b′ = 0, which implies that a′ ∈ 〈s〉 or b′ ∈ 〈s〉, a contradiction.
Similarly, suppose R/sR is a reduced ring and there exists a ∈ R\{0} such that an = 0. Let na and
a′ be as above. Then, a′n = 0 and hence a′

n
= 0, which implies that a′ ∈ 〈s〉, a contradiction.
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3.2 Polarization

As usual, let S = k[x1, . . . , xr].

Lemma 3.2.1. Let I ⊂ S be a monomial ideal with minimal generating set of monomials
{m1, . . . ,mn}, where mi =

∏n
j=1 x

aij
j for i = 1, . . . , n. Fix an integer j ∈ [n] and suppose that

aij > 1 for at least one i ∈ [r]. Let T = S[y] and let J ⊂ T be the monomial ideal with minimal
generating set of monomials {m′1, . . . ,m′n}, where

m′i =

{
mi aij = 0

(mi/xj)y aij ≥ 1.

Then y − xj is a non-zero divisor in T/J and

T/J

(y − xj)T/J
∼= S/I

as S-modules.

Proof. Suppose y−xj is a zero divisor in T/J. Then y−xj ∈ P for some P ∈ Ass(J). By applying
Proposition 1.1.5 on the Nr-grading, P is a monomial ideal, and hence y, xj ∈ P. Thus, there exists
a monomial f ∈ T\J such that yf, xjf ∈ J . Then there exist m′k,m

′
l and monomials f1, f2 ∈ T

such that yf = m′kf1 and xjf = m′lf2.
Since f 6∈ J , xj divides m′l and hence, by the construction of J , y divides m′l. This implies that y
divides f . Note that y does not divide f1 because f 6∈ J . This forces y2 to divide m′k, which is a
contradiction to the construction of J .
Define a ring homomorphism φ : T → S such that φ|S = Id and φ(y) = xj. Then, φ(J) = I and
by Lemma 3.1.15, we have the required isomorphism.

Motivated by Lemma 3.2.1, we define the polarization of a monomial ideal I.
Let I ⊂ S be a monomial ideal with minimal generating set of monomials {m1, . . . ,mn}, where
mi =

∏n
j=1 x

aij
j for i = 1, . . . , n. For all j = 1, . . . , r, define aj = max{aij : i = 1, . . . , n}.

Let T = k[x11, x12 . . . , x1a1 , x21, . . . , x2a2 , . . . , xn1, . . . , xnan ]. Define J to be a monomial ideal in T
with generating set {m′1, . . . ,m′n} where

m′i =
n∏
j=1

aij∏
k=1

xjk

for all i ∈ [n].

Definition 3.2.2. The monomial ideal J is called the polarization of I.

Example 3.2.3. Consider the ideal 〈x1x
2
2, x

4
2〉 ⊂ k[x1, x2]. The polarisation of I is

J = 〈x11, x21x22, x21x22x23x24〉 ⊂ k[x11, x21, x22, x23, x24].
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Proposition 3.2.4. Let I ⊂ S be a monomial ideal and J ⊂ T be its polarization. Then the
sequence z given by

xn1 − xnan , . . . , xn1 − xn2, . . . , x21 − x2a2 , . . . , x21 − x22, . . . , x11 − x1a1 , . . . , x11 − x12

is a regular sequence on T/J and
T/J

(z)T/J
∼= S/I

as graded k-algebras.

Proof. Firstly, replace xi in S by xi1 for all i ∈ [r]. Let the minimal generating set of monomials

of I be {m(11)
1 , . . . ,m

(11)
n } Now, let T12 = S[x12] and define m

(12)
i = m

(11)
i if x11 does not appear

in m
(11)
i and m

(12)
i = (m

(11)
i /x11)x12 otherwise. Let J12 = 〈m(12)

1 , . . . ,m
(12)
n 〉. By Lemma 3.2.1,

x11 − x12 is a non-zero divisor on T12/J12 and

T12/J12

(x11 − x12)T12/J12

∼= S/I.

Similarly, let T13 = T12[x13] and define J13 = 〈m(13)
1 , . . . ,m

(13)
n 〉 m(13)

i = m
(11)
i if x11 does not appear

in m
(11)
i and m

(13)
i = (m

(11)
i /x11)x13 otherwise. Note that

T13/J13

(x11 − x13, x11 − x12)T13/J13

∼=
T12/J12

(x11 − x12)T12/J12

∼= S/I.

Continue the process until T1a1 . Then, let T22 = T1a1 [x22]. We eventually get Tnan = T. Repeated
application of Lemma 3.2.1 completes the proof.

Corollary 3.2.5. Let I ⊂ S be a monomial ideal and J ⊂ T be its polarization. Then
(i) βij(I) = βij(J) for all i, j;
(ii) HS/I(t) = (1− t)δHT/J(t) where δ = dimT − dimS;
(iii) pdim(S/I) = pdim(S/J) and reg(S/I) = reg(T/J).

Proof. (i) Follows from the fact that z is a regular sequence on T/J .
(ii) Follows from Corollary 1.2.9.
(iii) Follows from (i).

3.3 The lexsegment ideal

Given a graded ideal I ⊂ S, our aim is to show the existence of a special ideal, the lexsegment
ideal of I, denoted by I lex, such that S/I and S/I lex have the same Hilbert function.
By Corollary 2.3.5, S/I and S/inτ (I) have the same Hilbert function for any monomial order τ
on S. Thus, we can assume that I is a monomial ideal. By Theorem 2.3.4, the monomials in S
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not belonging to I form a k-basis of I and since this k-basis determines the Hilbert functions of
S/I, the Hilbert function of S/I does not depend on the base field k. We can therefore assume
that char(k) = 0.
We denote by Md(S) the set of all monomials of S of degree d.

Definition 3.3.1. A set L ⊂Md(S) is called a lexsegment if for all m ∈ L, we have that m′ ∈ L
for all m′ ∈Md(S) such that m′ ≥lex m.

Definition 3.3.2. A set L ⊂Md(S) is called strongly stable if xi(m/xj) ∈ L for all m ∈ L and
all pairs (i, j) such that i < j and xj divides m.

For a monomial m ∈ S, we set γ(m) = max{i : xi divides m}.

Definition 3.3.3. A set L ⊂ Md(S) is called stable if xi(m/xγ(m)) ∈ L for all m ∈ L and all
i < γ(m).

Definition 3.3.4. A monomial ideal I is said to be a lexsegment ideal or a (strongly) stable
monomial ideal, if for each d the monomials of degree d in I form a lexsegment, or a (strongly)
stable set of monomials respectively.

Remark 3.3.5. Note that every lexsegment set is strongly stable, and every strongly stable set
is stable.

Example 3.3.6. Let S = k[x, y, z, w].
Suppose I1 is the smallest lexsegment ideal containing xyz. Then I1 = 〈xyz, xy2, x2w, x2z, x2y, x3〉.
Suppose I2 is the smallest strongly stable ideal containing xyz. Then I2 = 〈xyz, xy2, x2z, x2y, x3〉.
Suppose I3 is the smallest stable ideal containing xyz. Then I3 = 〈xyz, xy2, x2y, x3〉.

Now we have that S/I and S/ginτ (I) have the same Hilbert function, and that ginτ (I) is a strongly
stable ideal [12]. Hence, we can assume that I is a strongly stable ideal.

Theorem 3.3.7. Let I ⊂ S be a graded ideal. There exists a unique lexsegment ideal, denoted
I lex, such that S/I and S/I lex have the same Hilbert function.

Given a graded ideal I, with jth graded component Ij, denote by I lex
j the k-vector space spanned

by the unique lexsegment Lj with |Lj| = dimk Ij. Define I lex = ⊕jI lex
j .

Note that if I lex as defined above is an ideal, it is the only possible lexsegment ideal such that
S/I and S/I lex have the same Hilbert function. Therefore, we only need to show that I lex is an
ideal to prove Theorem 3.3.7. It is sufficient to show that {x1, . . . , xr}Lj ⊂ Lj+1.

Definition 3.3.8. Let N be a set of monomials in S. Then the shadow of N is said to be the set

Shad(N ) = {x1, . . . , xr}N = {xiu : u ∈ N, i = 1, . . . , n}.

Lemma 3.3.9. If N ⊂Md(S) is stable, strongly stable or lexsegment, then so is Shad(N ).
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Given N ⊂ Md(S), we denote by γi(N) the number of elements γ(m) = i and set γ≤i(N ) =∑i
j=1 γi(N ).

Lemma 3.3.10. Let N ⊂Md(S) be a stable set of monomials. Then Shad(N) is a stable set and
(i) γi(Shad(N)) = γ≤i(N );
(ii) |Shad(N)| =

∑r
i=1 γ≤i(N ).

Proof. (ii) follows directly from (i). To prove (i), define the map

φ : {m ∈ N : γ(m) ≤ i} → {m ∈ Shad(N ) : γ(m) = i}, m→ mxi.

φ is clearly injective. Let m′ ∈ Shad(N ) such that γ(m′) = i. There exists j ∈ [r] and m ∈ N
such that m′ = xjm. We must have γ(m) ≤ i. If j = i, then we are done. If j < i, then γ(m) = i
and since N is stable, m1 = xj(m/xi) ∈ N . Hence, we have m′ = xim1 for m1 ∈ N . This proves
that φ is a bijection, which implies (i).

Theorem 3.3.11 (Bayer). Let L ⊂ Md(S) be a lexsegment and N ⊂ Md(S) be a strongly stable
set of monomials with |L| ≤ |N |. Then γ≤i(L) ≤ γ≤i(N ) for i = 1, . . . , r.

Proof. Observe that we can write N = N0 ∪N1xr ∪ · · · ∪Ndxdr where each Nj is a strongly stable
set of monomials of degree d − j in the variables x1, . . . , xr−1. The lexsegment L has a similar
decomposition L0 ∪ · · · ∪ Lrxr, where each Lj is a lexsegment.
We prove the theorem by induction on the number of variables. If r = 1, we have that γ≤1(L) =
|L| ≤ |N | = γ≤1(N ).
Let r > 1. We have that γ≤r(L) = |L| and γ≤r(N ) = |N | and hence, γ≤r(L) ≤ γ≤r(N ). Note that
for i < r, γ≤i(L) = γ≤i(L0) and γ≤i(N ) = γ≤i(N0). Hence, if we show that |L0| ≤ |N0|, the proof
is done by induction.
For each j, let N ∗j be the lexsegment in Md−j(k[x1, . . . , xr−1]) with |N ∗j | = |Nj| and let N ∗ =
N ∗0 ∪N ∗1 xr ∪ · · · ∪ N ∗d xdr . We claim that N ∗ is a strongly stable set of monomials.
Observe that it suffices to show that {x1, . . . , xr−1}N ∗j ⊂ N ∗j−1. By using that N is a strongly
stable set, we have that {x1, . . . , xr}Nj ⊂ Nj−1. Then, by Lemma 3.3.10 and the induction
hypothesis, we have that

|{x1, . . . , xr−1}N ∗j | =
r−1∑
i=1

γ≤i(N ∗j ) ≤
r−1∑
i=1

γ≤i(Nj) = |{x1, . . . , xr−1}Nj| ≤ |Nj−1| = |N ∗j−1|.

The fact that |{x1, . . . , xr−1}N ∗j | and |N ∗j−1| are both lexsegments forces |{x1, . . . , xr−1}N ∗j | ⊂
|N ∗j−1|, which implies that N ∗ is a strongly stable set of monomials.
Now, given a monomial m =

∏r
i=1 x

ai
i , we set m = (xn−1/xn)anm. Observe that if m1 ≤ m2 in the

lexicographic order, then m1 ≤ m2.
Let m1 = minL and m2 = minN ∗. Since N ∗ is strongly stable, m2 ∈ N ∗0 and m2 ≥ min(N ∗0 ).
Further, min(N ∗0 ) ≥ m2, which implies that min(N ∗0 ) = min(N ∗0 ) ≥ m2. Hence, min(N ∗0 ) = m2

and similarly, min(L∗0) = m1.
Since |L| ≤ |N | = |N ∗|, we have that m1 ≥ m2 and hence, m1 ≥ m2. As L0 and N ∗0 are
lexsegments, we get that |L0| ≤ |N ∗0 | = |N0|, which completes the proof.
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We now complete the proof of Theorem 3.3.7.
Recall that we may assume that I is strongly stable. LetNj be the strongly stable set of monomials
which spans the k-vector space Ij. Since |Lj| = |Nj|, Bayer’s theorem together with Lemma 3.3.10
implies that

|Shad(Lj)| =
r∑
i=1

γ≤i(Lj) ≤
r∑
i=1

γ≤i(Nj) = |Shad(Nj)|.

Since I is an ideal, we have that Shad(Nj) ⊂ Nj+1. Hence,

|Shad(Lj)| ≤ |Shad(Nj)| ≤ |Nj+1| = |Lj+1|.

Since Shad(Lj) and Lj+1 are both lexsegments, |Shad(Lj)| ≤ |Lj+1| implies that Shad(Lj) ⊂ Lj+1,
as desired.

30



Chapter 4

The Auslander-Buchsbaum-Serre
Theorem

In this chapter, we prove a result analogous to Hilbert’s Syzygy Theorem (Theorem 2.4.7).

Theorem 4.1.1. Let (R,m, k) be a Noetherian local ring and µ(m) = n. Then pdimR(k) ≥ n and
βRi (k) ≥

(
n
i

)
for all i ∈ {0, . . . , n}. In particular, if R is a regular local ring, then depth(R) ≥ µ(m).

Proof. Let {x1, . . . , xn} be a minimal generating set of m. Therefore, xi ∈ m \ m2 for all i. We
construct a minimal free resolution of k step by step.
Let F1 := ∧1Rn denote ⊕ni=1Rei. Define φ1 : ∧1Rn → R as φ1(ei) = xi. Let

vij := xiej − xjei ∈ F1, for all 1 ≤ i < j ≤ n.

Note that each vij ∈ ker(φ1). We claim that the set {vij|1 ≤ i < j ≤ n} can be extended to a
minimal generating set of K1 := ker(φ1). Indeed, suppose there exists {aij ∈ R | 1 ≤ i < j ≤ n}
such that

∑
1≤i<j≤n

aijvij ∈ mK1. Since F1 maps minimally onto m, K1 ⊆ mF1, and hence mK1 ⊆

m2F1. Suppose, for some 1 ≤ i′ < j′ ≤ n we have ai′j′ /∈ m. Observe that the coefficient of ej′ in∑
1≤i<j≤n

aijvij is
j′−1∑
i=1

aij′xi −
n∑

i=j′+1

aj′ixi, and hence
j′−1∑
i=1

aij′xi −
n∑

i=j′+1

aj′ixi ∈ m2. Since ai′j′ /∈ m, it

is a unit. Hence,

{x1, . . . , xi′−1,

j′−1∑
i=1

aij′xi −
n∑

i=j′+1

aj′ixi, xi′+1, . . . , xn}

is also a minimal generating set of m with one of the elements in m2, which is a contradiction.
Therefore, aij ∈ m for all 1 ≤ i < j ≤ n, which proves the claim.

Let F2 = RβR
2 (k) be a free module mapping minimally onto ker(φ1). From what we have seen

above, rank(F2) = βR2 (k) ≥
(
n
2

)
. Thus, we write F2 = ∧2Rn ⊕G2.
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Inductively assume that {vi1...ir | 1 ≤ i < j ≤ n} form a part of minimal generating set of
ker(φr−1), where

vi1...ir =
r∑

k=1

(−1)k−1xikei1 ∧ · · · ∧ eik−1
∧ eik+1

∧ · · · ∧ er ∈ Fr−1 = ∧r−1Rn ⊕Gr−1.

Let Fr denote a free module mapping minimally onto ker(φr−1). Then we have rank(Fr) = βRr (k) ≥(
n
r

)
. We can decompose Fr as ∧rRn

⊕
Gr, where Gr is an R-free module of rank βRr (k)−

(
n
r

)
. Let

φr : Fr → Fr−1 be such that
φr(ei1 ∧ · · · ∧ eir) = vi1...ir .

For all 1 ≤ i1 < · · · < ir+1 ≤ n, let

vi1...ir+1 =
r+1∑
k=1

(−1)k−1xikei1 ∧ · · · ∧ eik−1
∧ eik+1

∧ · · · ∧ eir+1 .

Note that for all 1 ≤ i1 < · · · < ir+1 ≤ n, vi1...ir+1 ∈ ker(φr). Let Kr denote ker(φr). We claim
that

{vi1...ir+1 | 1 ≤ i1 < · · · < ir+1 ≤ n}
forms a part of minimal generating set of Kr. To prove the claim, suppose that

{ai1...ir+1 ∈ R|1 ≤ i1 < · · · < ir+1 ≤ n}

be such that
∑
ai1...ir+1vi1...ir+1 ∈ mKr. Since Fr maps minimally onto ker(φr−1), we must have

Kr ⊆ mFr and hence, mKr ⊆ m2Fr. Suppose, for some 1 ≤ i′1 < · · · < i′r+1 ≤ n, ai′1...i′r+1
/∈ m.

Observe that the coefficient of ei′2 ∧ . . . ∧ ei′r+1
in
∑
ai1...ir+1vi1...ir+1 is

i′2−1∑
i1=1

ai1i′2i′3...i′r+1
xi1 −

i′3−1∑
i1=i′2+1

ai′2i1i′3...i′r+1
xi1 + · · ·+ (−1)r

n∑
i1=i′r+1+1

ai′2i′3...i′r+1i1
xi1 ,

which must belong to m2. Since ai′1i′2...i′r+1
/∈ m, this contradicts the assumption that {x1, . . . , xn}

is a minimal generating set of m. Therefore, the set {vi1...ir+1 | 1 ≤ i1 < · · · < ir+1 ≤ n} can be
extended to a minimal generating set of Kr. Hence, rank(Fr+1) ≥

(
n
r+1

)
.

If R is regular local, by the Auslander-Buchsbaum formula, depth(R) = pdimR(k) and hence
depth(R) ≥ µ(m).

Recall the following result.

Lemma 4.1.2. Let (R,m, k) be a Noetherian local ring. Let {b1, . . . , bn} be a minimal generating
set of m, and K•(b1, . . . , bn) be the corresponding Koszul complex. Then depth(R) = min{j |
Hn−j(K•(b1, . . . , bn)) 6= 0}.

Corollary 4.1.3. Let (R,m, k) be a regular local ring. Then depth(R) = µ(m).
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Proof. Note that the above lemma implies that depth(R) ≤ µ(m). Hence, we have depth(R) =
µ(m).

Corollary 4.1.4. Let (R,m, k) be a regular local ring. Then every minimal generating set of m is
a regular sequence.

Proof. From the above lemma, since depth(R) = µ(m), we have that the Koszul complex corre-
sponding to a minimal generating set of m must be exact.

Theorem 4.1.5 (Auslander-Buchsbaum-Serre). Let (R,m, k) be a Noetherian local ring with
depth(R) = d. The following statements are equivalent:
(i) pdimR(k) <∞.
(ii) pdimR(M) <∞ for all finitely generated R-modules M .
(iii) m is generated by a regular sequence.
(iv) m is generated by d elements.
(v) pdimR(k) = d.

Proof. (i) =⇒ (ii) Let pdimR(k) = n <∞. Then we have TorRi (M, k) = 0 for all i > n and for all
finitely generated R-modules M . Therefore, pdimR(M) <∞ for all finitely generated R-modules
M .
(ii) =⇒ (i) is obvious since k is a finitely generated R-module.
(i) =⇒ (iii) follows from Corollary 4.1.4.
(iii) =⇒ (i) If m is generated by a regular sequence x1, . . . , xn, then the Koszul complex on
x1, . . . , xn gives a free resolution of k of finite length, which proves pdimR(k) = n <∞.
(i) =⇒ (iv) From Theorem 4.1.1 we know that depth(R) ≥ µ(m). Hence, d ≥ µ(m). Thus m is
generated by d elements.
(i) =⇒ (v) If pdimR(k) < ∞, then by Auslander-Buchsbaum formula we get pdimR(k) =
depth(R) = d.
(v) =⇒ (i) is obvious.
(iv) =⇒ (i) Let m be generated by d elements, that is, let µ(m) ≤ depth(R). From Lemma 4.1.2
we have depth(R) ≤ µ(m). Therefore depth(R) = µ(m) = d. If x1, . . . , xd is a minimal generating
set of m, then by Lemma 4.1.2 we have that the Koszul complex on x1, . . . , xd is exact, and hence
is a free resolution of k of length d. This shows that pdimR(k) = n <∞.

Proposition 4.1.6. Let (R,m, k) be a regular local ring such that depth(R) = 2. Then µ(m) = 2,
and m is generated by a regular sequence.

Proof. By Auslander-Buchsbaum formula we have depth(R) = pdimR(k) = 2. We know that
µ(m) 6= 1, otherwise we would have depth(R) = 1. Hence, µ(m) ≥ 2, and by Theorem 4.1.1 we
have µ(m) = 2. Suppose that m = 〈x1, x2〉. We show that x1, x2 form a regular sequence by
showing that the Koszul complex K(x1, x2) is exact. Consider the Koszul complex on x1, x2 as
follows:

0→ R
φ2−→ R2 φ1−→ R→ R/m→ 0.
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Since pdimR(k) = 2 and since R2 maps minimally onto m, we see that ker(φ1) is free. By the
Hilbert-Burch theorem, rank(ker(φ1)) = 1. Let ker(φ1) = 〈(a1, a2)〉, where a1, a2 ∈ m. Since
(−x2, x1) ∈ ker(φ1), there exists c ∈ R such that (−x2, x1) = c(a1, a2). Since x1, x2 ∈ m \ m2, we
must have c /∈ m, and hence ker(φ1) = 〈(−x2, x1)〉. Therefore, the Koszul complex K(x1, x2) is
exact, and hence x1, x2 is regular.

Proposition 4.1.7. Let R be a UFD, and let I be an ideal of R such that µ(R) = 2. Then,
βR2 (R/I) = 1.

Proof. Let I = {x1, x2}, and let a1, a2 ∈ R\{0} such that a1x1 + a2x2 = 0. Let a = gcd(a1, a2),
and b1 = a1/a, b2 = a2/a. Note that b1x1 + b2x2 = 0, and b1, b2 are coprime.
Suppose there exist k1, k2 ∈ R such that k1x1 + k2x2 = 0.

k1x1 + k2x2 = 0 =⇒ b1k1x1 + b1k2x2 = 0 =⇒ −b2k1x2 + b1k2x2 = 0 =⇒ b2k1 = b1k2.

Since b1 and b2 are co-prime, b1|k1. Let k1 = kb1, and thus k2 = kb2. Hence, the kernel of the map
from R2 to R, which maps the basis elements of R2 to a minimal generating set of I must be a
cyclic R-module. This implies that βR2 = 1.
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Chapter 5

Existence of bounds on projective
dimension and regularity

5.1 Burch’s construction

To start with, I recall a couple of results which will be instrumental in the following proof.

Lemma 5.1.1. Let (R,m, k) be a Noetherian local ring. Let I be an ideal whose associated primes
are minimal over I. If P ∈ Ass(I), IP ∩R is the P -primary component in the minimal irredundant
primary decomposition of I.

Proposition 5.1.2. (Macaulay’s unmixedness theorem) In a Cohen-Macaulay ring R, the ideal I
generated by a regular sequence is unmixed, that is, all associated primes of R/I have the same
height as I.

Theorem 5.1.3 (Burch). Let (R,m, k) be a Cohen-Macaulay ring and let s be an integer such
that 1 ≤ s ≤ depth(R). Then there exists an ideal Is of R, generated by three or fewer elements
of R, such that pdim(R/Is) = s.

Proof. If depth(R) ≤ 3, let Is be the ideal generated by a regular sequence of length s.
Suppose depth(R) = d > 3. We inductively construct a sequence {g1, . . . , g2(d−2)} of elements of
R.
Let g1, g2, g3, g4 be a regular sequence in R. Consider the short exact sequence

0→ (g1, g2) ∩ (g3, g4)→ (g1, g2)⊕ (g3, g4)→ (g1, g2, g3, g4)→ 0.

Since pdim(R/(g1, g2)) = pdim(R/(g3, g4)) = 2 and pdim(R/(g1, g2, g3, g4)) = 4, we have that
pdim(R/(g1, g2) ∩ (g3, g4)) = 3 (follows directly by observing the induced long exact sequence of
Tor modules).
Suppose we have chosen g1, g2, . . . , g2k (k < d− 2) satisfying the conditions that
(i) g2i−1, g2i, g2j−1, g2j is a regular sequence for all i ≤ j ≤ k.
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(ii) pdim(R/(g1, g2) ∩ · · · ∩ (g2k−1, g2k)) = k + 1.
By the Auslander-Buchsbaum formula, depth(R/(g1, g2) ∩ · · · ∩ (g2k−1, g2k)) = d− k − 1 ≥ 2. Let
g2k+1 be a nonzerodivisor and non-unit in R/(g1, g2) ∩ · · · ∩ (g2k−1, g2k). Then,

depth
R

(g1, g2) ∩ · · · ∩ (g2k−1, g2k) + (g2k+1)
≥ 1.

Hence, the ideal (g1, g2) ∩ · · · ∩ (g2k−1, g2k) + (g2k+1) has no m-primary component. Also, since
depth(R) > 3, for any 1 ≤ i ≤ k, depth(R/(g2i−1, g2i, g2k+1) > 0 and (g2i−1, g2i, g2k+1) has no m-
primary component. Since R is Noetherian, all ideals of R have finitely many associated primes,
and we can pick g2k+2 to be a non-unit in no associated prime of (g1, g2)∩· · ·∩(g2k−1, g2k)+(g2k+1)
and in no associated prime of (g2i−1, g2i, g2k+1) for any i ≤ k. Then,

pdim
R

(g1, g2) ∩ · · · ∩ (g2k−1, g2k) + (g2k+1, g2k+2)
= k + 3,

and hence, by observing the induced long exact sequence of Tor modules, we have that

pdim
R

(g1, g2) ∩ · · · ∩ (g2k−1, g2k) ∩ (g2k+1, g2k+2)
= k + 2.

Thus, we can construct a sequence {g1, . . . , g2d−4} such that {g1, . . . , g2k} satisfies the above con-
ditions for all k ≤ d− 2.
Observe that (g2i−1, g2i) : (gj) = (g2i−1, g2i) for all i ≤ 2d − 4 and j 6= 2i, 2i − 1. Hence, for each
associated prime P of (g2i−1, g2i),

(g1g3 . . . g2d−5, g2g4 . . . g2d−4)P = (g2i−1, g2i)P.

It follows that PRP is an associated prime of (g1g3 . . . g2d−5, g2g4 . . . g2d−4)P in RP and thus, P
is an associated prime of (g1g3 . . . g2d−5, g2g4 . . . g2d−4) in R. However,

∏
j≤2s−4,j 6∈{2i−1,2i} gj is a

nonzerodivisor in R/(g2i−1, g2i) and a zerodivisor in R/(g1g3 . . . g2d−5, g2g4 . . . g2d−4). This implies
that (g1g3 . . . g2d−5, g2g4 . . . g2d−4) has an associated prime which is not an associated prime of
(g2i−1, g2i).
Note that g1g3 . . . g2d−5, g2g4 . . . g2d−4 is a regular sequence. Indeed, if g1g3 . . . g2d−5h1 = g2g4 . . . g2d−4h2

for h1, h2 ∈ R, then g1g3 . . . g2d−7h1 = g2d−4h3, as {g2d−5, g2d−4} is a regular sequence. Since
{g2d−7, g2d−4} is also a regular sequence, g1g3 . . . g2d−9h1 = g2d−4h4. Proceeding in this manner,
we get h1 = g2d−4f1 for some f1 ∈ R and similarly, h2 = g2d−5f2 for some f2 ∈ R. Hence,
g1g3 . . . g2d−7f1 = g2g4 . . . g2d−6f2 and we are done by induction.
Hence, all associated primes of (g1g3 . . . g2d−5, g2g4 . . . g2d−4) are minimal over (g1g3 . . . g2d−5, g2g4 . . . g2d−4)
and have height two. Also note that gj is not contained in any associated prime of (g2i−1, g2i) for
any i, which forces that no associated prime of (g2i−1, g2i) is an associated prime of (g2j−1, g2j).
Hence,

(g1g3 . . . g2d−5, g2g4 . . . g2d−4) = (g1, g2) ∩ · · · ∩ (g2d−5, g2d−4) ∩ J

36



where J = ∩P∈Λ((g1g3 . . . g2d−5, g2g4 . . . g2d−4)P∩R), where Λ = Ass((g1g3 . . . g2d−5, g2g4 . . . g2d−4))\
∪1≤i≤d−2Ass(g2i−1, g2i).
Fix i ≤ d − 2. Observe that since every associated prime of J has height 2 and is not an
associated prime of (g2i−1, g2i), it must contain a nonzerodivisor in R/(g2i−1, g2i). Since every
primary component of J contains a power of an associated prime of J , it also contains a nonze-
rodivisor in R/(g2i−1, g2i). The product of the nonzerodivisors corresponding to every primary
component of J produces an element in J which is a nonzerodivisor in R/(g2i−1, g2i). Hence,
(g2i−1, g2i) : J = (g2i−1, g2i) for 1 ≤ i ≤ d− 2.
By prime avoidance, there exists xd ∈ J such that xd is a nonzerodivisor in R/(g2i−1, g2i) for
1 ≤ i ≤ d− 2. Then,

(g1g3 . . . g2d−5, g2g4 . . . g2d−4) : xd = (g1, g2) ∩ · · · ∩ (g2d−5, g2d−4).

Since the projective dimension of (g1g3 . . . g2d−5, g2g4 . . . g2d−4) is two, the short exact sequence

0→ R

I : xd

xd−→ R

I
→ R

(I, xd)
→ 0

(where I = (g1g3 . . . g2d−5, g2g4 . . . g2d−4)) gives us that

pdim
R

(g1g3 . . . g2d−5, g2g4 . . . g2d−4, xd
) = s.

The above theorem tells us that we cannot hope to bound projective dimension as a function of
the number of generators. This raises the question of whether we can achieve bounds as functions
of the degrees of the generators.

5.2 Stillman’s question and existence of bounds on regu-

larity

Stillman’s question: Let k be a field. Does there exist a bound, independent of n, on the
projective dimension of an ideal in S = k[x1, . . . , xn] which is generated by N forms of degrees
d1, . . . , dN?
Stillman’s question was answered in the affirmative by Ananyan and Hochster [1]. However, the
bounds they produce are far from optimal. Optimal bounds have been given in the some cases,
such as the following:

1. When I is minimally generated by N quadrics and ht(I) = 2, pdim(S/I) ≤ 2N − 2 [15].

2. When I is minimally generated by four quadrics, pdim(S/I) ≤ 6 [16].
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3. When I is minimally generated by three cubics, pdim(S/I) ≤ 5. [17].

Definition 5.2.1. Let R be a polynomial ring over a field and M be a finitely generated graded
R-module. The Castelnuovo-Mumford regularity of M is defined as regR(M) = max{j − i :
βij(M) 6= 0}.

Note that reg(R/I) = reg(I)− 1 for an ideal I ⊂ R.
A question similar to Stillman’s question can be asked on bounds on regularity.

Question 1: Let k be a field. Does there exist a bound, independent of n, on the regularity of
an ideal in S = k[x1, . . . , xn] which is generated by N forms of degrees d1, . . . , dN?
In fact, as outlined below, question 1 is equivalent to Stillman’s question, if k is infinite. In fact,
even if k is finite, we can consider the algebraic closure of k and arrive at the same conclusion.

Suppose Stillman’s question has an affirmative answer, that is, there is a boundB = B(N, d1, . . . , dN)
such that pdim(R/I) ≤ B for any ideal I ⊂ S = k[x1, . . . , xn] which is minimally generated by
N forms of degree d1, . . . , dN . By the Auslander-Buchsbaum formula, depth(S/I) ≥ n − B. Let
f = f1, . . . , fn−B be a sequence of linear forms in S which is regular in S/I. Such a sequence can
be chosen because k is infinite. Since S is a domain and f1, . . . , fn−B are linear forms, f1, . . . , fn−B
is a regular sequence in R as well. Hence, regS(S/I) = regS/(f)(S/(I + (f))).

Now, S/(f) is a polynomial ring in B variables. There exists a bound on the regularity of S/(I +
(f)) in terms of d(J) = max{d1, . . . dN} and the number of variables B ([3], Theorem 3.8).

Conversely, assume that question 1 can be answered in the positive, that is, there exists a bound
B = B(N, d1, . . . , dN) such that reg(I) ≤ B for any ideal I ⊂ S which is minimally generated by
N forms of degree d1, . . . , dN . Consider gingrevlex(I), the generic initial ideal of I with respect to

the graded reverse lexicographic order. By a theorem of Bayer and Stillman ([8], Corollaries 19.11
and 20.21),

pdim(S/I) = pdim(S/gingrevlex(I)), reg(S/I) = reg(S/gingrevlex(I)).

Moreover, the projective dimension of S/gingrevlex(I) is the number of distinct variables appearing

in all the monomials minimally generating gingrevlex(I). Observe that for any ideal J of S, we

have that d(J) ≤ J , where d(J) denotes the maximal degree of a minimal generator of M . Hence,

pdim(S/I) = pdim(R/gingrevlex(I))

= number of distinct variables appearing in generators of gingrevlex(I)

≤ sum of degrees of generators of gingrevlex(I)

≤ (number of generators of gingrevlex(I))d(gingrevlex(I))

≤ (number of generators of gingrevlex(I))reg(gingrevlex(I))

= (number of generators of gingrevlex(I))reg(I)

≤ (number of generators of gingrevlex(I))B(N, d1, . . . , dN).

(5.1)
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The ideal gingrevlex(I) is generated by the initial terms of the elements of a Gröbner basis of I,
after a generic change of co-ordinates. Note that a change of co-ordinates on I does not change
the number of generators of I or the degrees of those generators. Hence, without loss of generality,
we can assume that I is in generic co-ordinates. To complete the proof, we need to bound the
cardinality of a Gröbner basis of I in terms of N, d1, . . . , dN .
In a process similar to Buchberger’s algorithm, we can attain a Gröbner basis by adjoining S-pairs
of the form

S(f, g) =
LCM(in(f), in(g))

in(f)
f − LCM(in(f), in(g))

in(g)
g.

Starting with N generators, the maximum number of elements adjoined to the generating set on
each iteration is a polynomial function in N . Further, deg(S(f, g)) ≥ max{deg(f), deg(g)} and
this inequality is strict unless in(f) divides in(g) or vice-versa. On the other hand,

deg(S(f, g)) = deg(in(S(f, g)))

= d(gingrevlex(I))

≤ reg(gingrevlex(I))

= reg(I)

≤ B.

(5.2)

This limits the possible iterations in terms of N, d1, . . . , dN . The proof is thus complete.

5.3 Regularity of modules over a Koszul algebra

Lemma 5.3.1. Let R and M be as in Definition 5.2.1. Then, reg(M(−d)) = reg(M) + d.

The proof follows immediately from the projective resolution of M(−d).
Observe that one can think of regularity of a module as the height of its Betti table. The fact that
the Betti table of M(−d) is d rows of zeroes above the Betti table of M gives us another method
of verifying the above lemma.
Note that reg(M) = max{r : ∃i such that TorRi (M, k)i+r 6= 0}, where k = R/R+.

Lemma 5.3.2. Let R be a non-negatively graded ring and 0→ A→ B → C → 0 be a short exact
sequence of R-modules. Then
(i) reg(B) ≤ max{reg(A), reg(C)}.
(ii) reg(C) ≤ max{reg(B), reg(A)− 1}.
(iii) reg(A) ≤ max{reg(B), reg(C) + 1}.

Proof. (i) Set t = reg(B). Then, there exists i such that TorRi (B, k)i+t 6= 0. The induced long
exact sequence on Tor modules gives us the following exact sequence

TorRi+1(C, k)i+t → TorRi (A, k)i+t → TorRi (B, k)i+t → TorRi (C, k)i+t → TorRi−1(A, k)i+t.
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Since TorRi (B, k)i+t 6= 0, TorRi (A, k)i+t 6= 0 or TorRi (C, k)i+t 6= 0. Hence, reg(A) ≥ t or reg(C) ≥ t.
(ii) Set t = reg(C). There exists i such that TorRi (C, k)i+t 6= 0. From the above exact sequence,
TorRi−1(A, k)i+t 6= 0 or TorRi (B, k)i+t 6= 0. Hence, t+ 1 ≤ reg(A) or t ≤ reg(B).
(iii) Set t = reg(A). There exists i such that TorRi (A, k)i+t 6= 0. From the above exact sequence,
TorRi+1(C, k)i+t 6= 0 or TorRi (B, k)i+t 6= 0. Hence, t− 1 ≤ reg(C) or t ≤ reg(B).

Lemma 5.3.3. Let R be a non-negatively graded ring and M be a graded R-module. Suppose
x ∈ R1 is a nonzerodivisor on M . Then, reg(M) = reg(M/xM).

Proof. Consider the short exact sequence

0→M(−1)
x−→M →M/xM → 0.

Let t = reg(M) and s = reg(M/xM). Then, by Lemma 5.3.1, reg(M(−1)) = t + 1. By (ii) of
Lemma 5.3.2, s ≤ t. Similarly, by (iii) of Lemma 5.3.2, t+ 1 ≤ s+ 1. Hence, s = t.

If M is a graded k[x1, . . . , xn]-module of finite length, let max(M) = max{r : Mr 6= 0}.

Proposition 5.3.4. Let S = k[x1, . . . , xn], and let M be a graded S-module of finite length. Then,

regS(M) = max{r : Mr 6= 0}.

Moreover, if s = regS(M),
TorSn(M, k)n+s 6= 0.

Proof. Consider the Koszul complex as a resolution of k,

0→ S(−n)bn → S(−n+ 1)bn−1 → · · · → S(−1)b1 → S → k→ 0,

where bi =
(
n
i

)
.

Let s = max(M). We have TorSi (M, k) ⊂ M(−i)bi . Hence, max(TorSi (M, k)) ≤ max(M(−i)) =
s+ i. Thus, reg(M) ≤ s. Further, note that

TorSn(M, k) = ker(M(−n)

( x1
x2
...
xn

)
−−−→M(−n+ 1)n).

Observe that S1Ms ⊂ Ms+1 = 0. Hence, 0 6= M(−n)s+n ⊂ TorSn(M, k), which implies that
regS(M) = s and TorSn(M, k)n+s 6= 0.

Definition 5.3.5. A Koszul algebra R is a graded k-algebra over which the residue field k has
a linear resolution, that is, regR(k) = 0.

Theorem 5.3.6. Let R be a Koszul algebra, and let Q = k[R1] = k[x1, . . . , xn]. The regularity of
any module M over R is finite. In fact,

regR(M) ≤ regQ(M).
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Proof. We first prove the theorem in the case that M has finite length. We proceed by induction
on length of M .
In this case, R/R+

∼= k injects into M via multiplication by an element of M , say, x of degree d.
Let N be the cokernel of this map. We have the short exact sequence

0→ k(−d)
x−→M → N → 0.

By Lemma 5.3.2, regR(M) ≤ regR(N) or regR(M) ≤ regR(k(−d)) = d (by Lemma 5.3.1). If
regR(M) ≤ regR(N), we can apply the induction hypothesis to conclude that

regR(M) ≤ regR(N) ≤ regQ(N) = max(N) ≤ max(M) = regQ(M).

On the other hand, if regR(M) ≤ d, then regR(M) ≤ max(M) = regQ(M).
In the general case, we use Noetherian induction on the poset of submodules of M ordered by
reverse inclusion. Hence, to prove that regR(M) ≤ regQ(M), it is sufficient to prove the following
statement: Given a submodule N ⊂ M , if regR(M/N1) ≤ regQ(M/N1) for all N1 ⊃ N , then
regR(M/N) ≤ regQ(M/N). Without loss of generality, let N = 0.
If R+ is not associated to M , then supposing as we may that k is infinite, there exists an element
x ∈ R1 such that x is a nonzerodivisor on M . The result now follows from the induction hypothesis
and 5.3.3.
If M is not of finite length, but R+ is associated to M , let M ′ be a maximal submodule of finite
length contained in M and let M ′′ = M/M ′ (note that M ′ 6= 0 because k injects into M). Then,
R+ is not associated to M ′′. Indeed, if R+ was associated to M ′′, k would inject into M ′′ and
hence M ′′ would contain a simple module, contradicting the maximality of M ′. As in the proof of
Proposition 5.3.4, TorSn(M ′′, k) = ann′′M(S+)(−n) = 0. This implies that TorSn(M, k) = TorSn(M ′, k)
and since TorSn(M ′, k)n+regS(M ′) = 0, we have regQ(M ′) ≤ regQ(M).
If regR(M ′′) ≤ regQ(M ′), by Lemma 5.3.2 and the finite length case treated above, we have that

regR(M) ≤ max{regR(M ′), regR(M ′′)}
≤ regQ(M ′)

≤ regQ(M).

(5.3)

If regR(M ′′) > regQ(M ′), then by the induction hypothesis and the finite length case above,

regR(M ′) ≤ regQ(M ′) < regR(M ′′) ≤ regQ(M ′′).

Since regR(M ′) ≤ regR(M ′′), regR(M) ≤ regR(M ′′) by Lemma 5.3.2(i) and regR(M ′′) ≤ regR(M)
by Lemma 5.3.2(ii). Hence, regR(M) = regR(M ′′) and similarly, regQ(M) = regQ(M ′′). By the
induction hypothesis, we are done.
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Chapter 6

Pure Resolutions

6.1 Cohen-Macaulay modules with pure resolution

Definition 6.1.1. Let S = k[x1, . . . , xn] and let M be a finitely generated non-negatively graded
R-module. We say that M has a pure resolution of type (d1, . . . , dp), where 0 < d1 < · · · < dp is
a strictly increasing sequence of non-negative integers, if M has a minimal resolution of the form

0→ S(−dp)βp → S(−dp−1)βp−1 → · · · → Sβ0 →M → 0.

Theorem 6.1.2 (Herzog, Kühl). Let S = k[x1, . . . , xn] and let M be an S-module having a pure
resolution of type (d1, . . . , dp) and Betti numbers (β0, . . . , βp), where p is the projective dimension
of M . Then the following conditions are equivalent:
(i) M is Cohen-Macaulay.

(ii) βi = biβ0 for i = 1, . . . , p, where bi = (−1)i−1
∏

j 6=i
dj

dj−di .

Proof. Since the Hilbert series is additive on short exact sequences, and HS(−d)(z) = zd/(1− z)n,
the pure resolution

0→ S(−dp)βp → S(−dp−1)βp−1 → · · · → Sβ0 →M → 0

yields HM(z) =
∑p

i=0(−1)iβiz
di/(1 − z)n, where d0 = 0. Recall that there exists a unique poly-

nomial R(z) ∈ Z[z] such that HM(z) = R(z)/(1 − z)d, where d = dim(M). Further, d is the
least integer r such that (1 − z)rHM(z) is a polynomial. Let m = n − d, the codimension of
M . By the Auslander-Buchsbaum formula, m ≤ p and m = p iff depth(M) = d, that is, M is
Cohen-Macaulay. We have that

(1− z)mR(z) =

p∑
i=0

(−1)iβiz
di .

Suppose M is Cohen-Macaulay. Then (1− z)p divides the right hand side of the above equation.
Conversely, suppose that (1 − z)p divides the right hand side. Then (1 − z)m−p+dHM(z) is a
polynomial, which forces m ≥ p. Hence, m = p and M is Cohen-Macaualay.
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Thus, we need to prove that (1 − z)p divides
∑p

i=0(−1)iβiz
di iff βi = biβ0 for i = 1, . . . , p, where

bi = |
∏

j 6=i(dj/dj−1)|. Consider the polynomial S(z) = 1 +
∑p

i=1 ciz
di (ci ∈ Q). (1 − z)p divides

S(z) iff S(j)(1) = 0 for j = 0, 1, . . . , p − 1 iff c1, . . . , cp satisfy the following system of linear
equations

p∑
i=1

ci = −1

p∑
i=1

cidi(di − 1) . . . (di − j + 1) = 0

(6.1)

The matrix corresponding to this linear system is as follows

1 1 . . . 1
d1 d2 . . . dp

d1(d1 − 1) d2(d2 − 1) . . . dp(dp − 1)
. . . .
. . . .
. . . .

d1(d1 − 1) . . . (d1 − p) d2(d2 − 1) . . . (d2 − p) . . . dp(dp − 1) . . . (dp − p)


.

On applying elementary row operations which do not affect the solution of the system, we obtain
the Van der Monde matrix

A =



1 1 . . . 1
d1 d2 . . . dp
d2

1 d2
2 . . . d2

p

. . . .

. . . .

. . . .

dp−1
1 dp−1

2 . . . dp−1
p


with non-zero determinant

∏
i<j(dj − di). Let Ai be the matrix obtained by replacing the ith

column of A by (−1, 0, . . . , 0). Then,

det(Ai) = (−1)i
∏
j 6=i

dj
∏

k<j, j,k 6=i

(dj − dk).

By Cramer’s rule,

ci = (−1)i
∏

j 6=i dj∏
j<i(di − dj)

∏
i<j(dj − di)

= −
∏
j 6=i

dj
dj − di

.

Hence, (1− z)p divides
∑p

i=0(−1)iβiz
di iff (−1)iβi/β0 = ci, that is, βi = (−1)i−1

∏
j 6=i

dj
dj−diβ0.
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6.2 Monomial ideals with linear resolution

Let S = k[x1, . . . , xn] and I ⊂ S be an equigenerated graded ideal, that is, a graded ideal whose
generators f1, . . . , fk are all of the same degree. Then the Rees ring

R(I) = ⊕j≥0I
jtj = S[f1t, . . . , fkt] ⊂ S[t]

is naturally bigraded with deg(xi) = (1, 0) for i = 1, . . . , n and deg(fit) = (0, 1) for i = 1, . . . , k.
Let T = S[y1, . . . , yk]. We define a bigrading on T by setting deg(xi) = (1, 0) for i = 1, . . . , n, and
deg(yj) = (0, 1) for j = 1, . . . ,m. Then there is a natural surjective homomorphism of bigraded
k-algebras φ : T → R(I) with φ(xi) = xi for i = 1, . . . , n and φ(yj) = fjt for j = 1, . . . , k.
Let

F• : 0→ Fp → Fp−1 → · · · → F0 → R(I)→ 0

be the bigraded minimal free T -resolution of R(I). Here Fi = ⊕jT (−aij,−bij) for some aij, bij ∈
Z≥0, for i = 0, . . . , p. Define the x-regularity of I to be

regx(R(I)) = max
i,j
{aij − i}.

Note that any homogeneous f ∈ S has bidegree (deg(f), 0) as an element of T . Hence, given a
bigraded T -module M , M(∗,n) is a graded S-module for every n. It follows that for all n, the exact
sequence F• gives an exact sequence of graded S-modules

G• : 0→ (Fp)(∗,n) → · · · → (F0)(∗,n) → R(I)(∗,n) → 0.

Note that considering R(I)(∗,n) is isomorphic to In as a S-module. However, as graded S-modules,
R(I)(∗,n) is isomorphic to In(dn), because (R(I)(∗,n))a ∼= In(a+dn) as k-vector spaces (an element
with bidegree (a, n) in R(I) is mapped to an element with bidegree (a+ dn, 0)).
Also note that (T (−a,−b))(∗,n) is isomorphic to the free S-module ⊕|u|=n−bS(−a)yu. It follows
that G• is a (possibly non-minimal) graded free S-resolution of In(dn).
The following result is due to Römer ([21]).

Theorem 6.2.1. With the notation introduced above,

reg(In) ≤ nd+ regx(R(I)),

for all n ≥ 0. In particular, if regx(R(I)) = 0, In has a linear resolution for all n ≥ 0.

Proof. The resolution G• above yields at once reg(In(dn)) ≤ regx(R(I)), and hence, reg(In) ≤
nd+ regx(R(I)).
If regx(R(I)) = 0, we have reg(In) ≤ nd. Since In is generated in degree nd, In must have a linear
resolution.

Corollary 6.2.2. With notation as above, let P = ker(φ). Then each power of I has a linear
resolution if for some monomial order < on T , the ideal P has a Gröbner basis G whose elements
are at most linear in the variables x1, . . . , xn, that is, degx(f) ≤ 1 for all f ∈ G.
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Proof. The hypothesis implies that in(P ) is generated by monomials u1, . . . , uk with degx(ui) ≤ 1.
Let C• be the Taylor resolution of in(P ). The module Ci has basis vI with I ⊂ {1, . . . , k}, |I| = i.
Each basis element eσ has the multidegree (aI , bI) where xaIybI = LCM{uj : j ∈ I}. It follows
that degx(eσ) ≤ i for all eσ ∈ Ci.
The shifts of C• bound the shifts of a minimal multigraded resolution of in(P ), we conclude that
regx(T/in(P )) = 0. By Corollary 3.1.19, regx(T/P ) ≤ regx(T/in(P )). Hence, regx(T/P ) = 0 and
the result follows from Theorem 6.2.1.

Now, suppose I is a squarefree monomial ideal generated in degree 2. We may associate to I a
graph G whose vertices are numbered 1, . . . , n, and {i, j} is an edge of G iff xixj ∈ I. The ideal
I is called the edge ideal of G and denoted by I(G). The assignment G → I(G) establishes a
bijection between graphs and squarefree monomial ideals generated in degree 2.
The complementary graph G of G is the graph on the same vertices, but whose edges are the
non-edges of G. A graph G is called chordal if each cycle of length greater than 3 has a chord.

Theorem 6.2.3. (Fröberg,[11]) Given a graph G, I(G) has a linear resolution iff G is chordal.

Let ∆ be a simplicial complex, and denote by F(∆) the set of facets of ∆. A facet F ∈ F(∆)
is called a leaf if either F is the only facet of ∆, or there exists G ∈ F(∆), G 6= F such that
H ∩ F ⊂ G ∩ F for each H ∈ F(∆) with H 6= F . A vertex i of ∆ is called a free vertex if i
belongs to precisely one facet.
A simplicial complex ∆ is called a quasi-tree if there exists a labelling F1, . . . , Fm of the facets
such that for all i, the facet Fi is a leaf of the subcomplex 〈F1, . . . , Fi〉. We call such a labeling a
leaf order.

Theorem 6.2.4. (Dirac) A graph G is chordal iff G is the 1-skeleton of a quasi-tree.

Proposition 6.2.5. Let I ⊂ S be a squarefree monomial ideal with 2-linear resolution. Then after
suitable renumbering of the variables, we have: if xixj ∈ I with i 6= j, k > i and k > j, then either
xixk or xjxk belongs to I.

Proof. Let G be the graph such that I(G) = I. By Theorems 6.2.3 and 6.2.4, G is the 1-skeleton
of a quasi-tree ∆. Let F1, . . . , Fm be a leaf order of ∆. Let i1 be the number of free vertices of the
leaf Fm. We label the free vertices of Fm by n, n − 1, . . . , n − i1 + 1, in any order. Next Fm−1 is
a leaf of 〈F1, . . . , Fm−1〉. Label the i2 free vertices of Fm−1 by n− i1, . . . , n− (i1 + i2) + 1, in any
order. Proceeding in this manner, we label all the vertices of ∆, that is, those of G, and choose
the numbering of the variables of S according to this labeling.
Suppose there exist i, j such that xixj ∈ I and k > i, j such that xixk 6∈ I and xjxk 6∈ I. Let
r be the smallest number such that Γ = 〈F1, . . . , Fr〉 contains the vertices 1, . . . , k. Then, by the
numbering of the variables, k ∈ Fr is a free vertex in Γ.
Since xixk 6∈ I, {i, k} is an edge in ∆. Suppose {i, k} is not an edge in Γ. Let p be the smallest
number such that Fp contains the edge {i, k}. Since Fp is a leaf in 〈F1, . . . , Fp〉, there exists
q ∈ {1, . . . , p− 1} such that i ∈ Fq and k ∈ Fq (since i and k belong in the intersection of Fp with
other facets). This contradicts the choice of p. Hence, {i, k} and similarly, {j, k}, are edges in Γ.
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Since Fr is the only facet containing the vertex k, i and j must be vertices of Fr as well. However,
this implies that {i, j} is an edge of Fr, and hence of ∆. This contradicts the assumption that
xixj ∈ I.

We now consider a monomial ideal I generated in degree 2 which is not necessarily squarefree.
Let J ⊂ I be the ideal generated by all squarefree monomials in I. Then I = 〈x2

i1
, . . . , x2

ik
, J〉 for

distinct i1, . . . , ik ∈ {1, . . . , n}.

Lemma 6.2.6. If I has a linear resolution, so does J .

Proof. Polarizing (section 3.2) the ideal I = 〈x2
i1
, . . . , x2

ik
, J〉 yields the ideal I∗ = 〈xi1 , . . . , xik , y1, . . . , yk, J〉

in k[x1, . . . , xn, y1, . . . , yk]. We consider I∗ as the edge ideal of the graphG∗ with vertices−k, . . . ,−1, 1, . . . , n,
where the vertices −i correspond to the variables yi and as usual, the vertices i correspond to the
variables xi. Let G be the restriction of G∗ to the vertices 1, . . . , n. Then, J is the edge ideal of
G.
By Corollary 3.2.5, if I has a linear resolution, so does I∗. Hence, by Theorem 6.2.3, G∗ is chordal.
Thus, G is chordal and by Theorem 6.2.3, J has a linear resolution.

In the situation of Lemma 6.2.6, let J = I(G), and let ∆ be the quasi-tree whose 1-skeleton is G
(Theorem 6.2.4).

Lemma 6.2.7. If I = 〈x2
i1
, . . . , x2

ik
, J〉 has a linear resolution, then ij is a free vertex of ∆ for

j = 1, . . . , k, and no two of these vertices belong to the same facet.

Proof. The hypothesis implies that G∗ is chordal.
Suppose ij is not a free vertex of ∆ for some j. Then there exist edges {ij, r} and {ij, s} in G
such that {r, s} is not an edge in G. Then {ij, r} and {ij, s} are also edges in G∗ and {r, s} is
not an edge in G∗. Since xijyj ∈ I∗, {ij,−j} is not an edge in G∗, and since xryj and xsyj do not

belong to I∗, it follows that {−j, r} and {−j, s} are edges in G∗. Thus, {ij, r}, {r,−j}, {−j, s}
and {s, ij} form a cycle in G∗ of length 4 without any chords, a contradiction.
Suppose ij and ik are free vertices belonging to the same facet of ∆. Then, {ij, il}, {il,−j},
{−j,−l} and {−l, ij} is a cycle in G∗ without any chords.

Corollary 6.2.8. Suppose I = 〈x2
i1
, . . . , x2

ik
, J〉 has a linear resolution and x2

i ∈ I. Then with the
numbering of the variables as given by Proposition 6.2.5 (applied on J), the following holds: for
all j > i for which there exists k such that xkxj ∈ I, we have xixj ∈ I or xixk ∈ I.

Proof. Suppose x2
i ∈ I and there exists j > i for which there exists k such that xkxj ∈ I, but xixj

and xixk do not belong to I. Then i 6= k.
If k 6= j, then {k, j} is not an edge of ∆, but {i, j} and {i, k} are. Hence, i is not a free vertex of
∆, which contradicts Lemma 6.2.7.
If k = j, then x2

j ∈ I and j is a free vertex in ∆. However, since {i, j} is an edge in ∆, i and j
must belong to the same facet, which contradicts Lemma 6.2.7.

46



Theorem 6.2.9. Let I ⊂ S be a monomial ideal generated in degree 2 and suppose that I possesses
the following properties (*) and (**):
(*) if xixj ∈ I with i 6= j, k > i and k > j, then either xixk or xjxk belongs to I;
(**) if x2

i ∈ I, then for all j > i for which there exists k such that xkxj ∈ I, we have xixj ∈ I or
xixk ∈ I.
Let R(I) = T/P be the Rees ring of I. Then there exists a lexicographic order <lex on T such
that the reduced Gröbner basis G of the defining ideal P with respect to <lex consists of binomials
f ∈ T with degx(f) ≤ 1.

Proof. Let Ω denote the graph with vertices 1, . . . , n + 1 whose edge set E(Ω) consists of those
edges (and loops) {i, j}, 1 ≤ i ≤ j ≤ n, with xixj ∈ I together with the edges {1, n + 1}, {2, n +
1}, . . . , {n, n+ 1}. Let k[Ω] denote the affine semigroup ring generated by those quadratic mono-
mials xixj, 1 ≤ i ≤ j ≤ n + 1, with {i, j} ∈ E(Ω). Let T = k[x1, . . . , xn, {y{i,j}}1≤i≤j≤n,{i,j}∈E(Ω)]
be the polynomial ring and define the surjective homomorphism π : T → k[Ω] by setting π(xi) =
xixn+1 and π(y{i,j}) = xixj. The toric ideal of k[Ω] is the kernel of π. Note that the Rees ring
R(I) is isomorphic to k[Ω] and we can identify the defining ideal P of the Rees ring with the toric
ideal of K[Ω].
Introduce the lexicographic order <lex on T induced by the ordering of the variables as follows:
(i) yi,j > yp,q if (a) min{i, j} < min{p, q} or (b) min{i, j} = min{p, q} and max{i, j} < max{p, q}.
(ii) y{i,j} > x1 > x2 > · · · > xn for all y{i,j}.
The Graver basis of an ideal is defined in [22] (Ch.4). It is proved in [18] that the Graver basis of
a toric ideal P coincides with the set of all binomials fτ (notation explained below), where τ is a
primitive even closed walk in Ω. Further, the universal Gröbner basis (defined earlier) is contained
in the Graver basis ([22], Proposition 4.11). A minimal Gröbner basis G of P with respect to <lex
can be obtained as a subset of the universal Gröbner basis of P . It follows that every element of
G is of the form fτ , where τ is a primitive even closed walk in Ω.
Let f be a binomial belonging to G and

Γ = ({w1, w2}, {w2, w3}, . . . , {w2m, w1})

be the primitive even closed walk associated to f . This means that setting yi,n+1 = xi and
w2m+1 = w1,

f = fΓ =
m∏
k=1

yw2k−1,w2k
−

m∏
k=1

yw2k,w2k+1
.

We need to prove that degx(fτ ) ≤ 1, that is, among the vertices w1, . . . , w2m, the vertex n + 1
appears at most once. Let yw1,w2 be the biggest variable appearing in f with respect to <lex, with
w1 ≤ w2. Note that inlex(fΓ) =

∏m
k=1 y{w2k−1,w2k}. We denote this as in(fΓ.

Note that w1 6= n+ 1 because w1 = n+ 1 forces w2 = n+ 1 and y{n+1,n+1} 6∈ T . If w2 = {n+ 1},
yw1,w2 being the biggest variable in f implies that Γ must be ({w1, w2}, {w2, w1}), in which case
fΓ = 0. Thus, suppose that w2 < n+ 1. Let k1 be the smallest integer such that wk1 = n+ 1.
Case 1: Suppose k1 is even. Since {n+ 1, w1} ∈ E(Ω), the closed walk

Γ′ = ({w1, w2}, {w2, w3}, . . . , {wk1−1, wk1}, {wk1 , w1})
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is an even closed walk in Ω with degx(fΓ′) = 1. Since fΓ′ ∈ I, in(g) must divide in(fΓ′) =
y{w1,w2}y{w3,w4} . . . y{wk1−1,wk1

}, which divides in(fΓ), for some g ∈ G. Since G is a minimal Gröbner
basis, we have in(g) = in(fΓ) and hence, in(fΓ′) = in(fΓ). Thus, k1 = 2m and the vertex n + 1
appears only once in Γ.
Case 2: Suppose k1 is odd. Suppose there exists k2 > k1 such that wk2 = n+ 1. We can further
assume that wi 6= n+ 1 for k1 < i < k2.
Case 2a: Suppose k2 is odd. Then consider the subwalk of Γ,

Γ′′ = ({w1, . . . , w2}, . . . , {wk1−1, wk1}, {wk2 , wk2+1}, . . . , {w2m, w1}).

Γ′ is a closed even subwalk in Ω, which contradicts that Γ is a primitive even closed walk in Ω.
Case2b: Suppose k2 is even. Let C be the odd closed walk

C = ({wk1 , wk1+1}, {wk1+1, wk1+2}, . . . , {wk2−1, wk2})

in Ω. Since both w1 and w2 are not equal to n+1, {w2, wk1} and {w1, wk1} are edges in Ω. Consider
the even closed walk

Γ′′′ = ({w1, w2}, {w2, wk1}, C, {wk2 , w1})

in Ω. The initial monomial in(fΓ′′′) divides in(fΓ) and hence, in(fΓ′′′) = in(fΓ). The monomial
in(fΓ′′′) has degree k2−k1+1

2
+ 1 and in(fΓ) has degree m. Equating the degrees, we get k2 − k1 =

2m − 3, which forces k2 = 2m and k1 = 3 because 3 ≤ k1 < k2 ≤ 2m. Hence, Γ′′′ = Γ. We also
have that w3 = w2m = n+ 1.
We claim that none of the vertices of C coincides with w1 or w2. Given a vertex wi, consider the
two paths

C1 = ({w3, w4}, . . . , {wi−1, wi}),

C2 = ({w2m, w2m−1}, . . . , {wi+1, wi}).

Since C is odd, one of C1 and C2 must be odd and the other must be even. Suppose C1 is odd
and C2 is even. If wi = w1, then

({w1, w2}, {w2, w2m}, C2)

is an even closed walk in Ω and contradicts the assumption that Γ is a primitive even closed walk.
If wi = w2, then the walk

({w2, w3}, C1)

gives us a contradiction. A similar argument works if C1 is even and C2 is odd. Hence, wi 6= w1

and wi 6= w2 for 3 ≤ i ≤ 2m.
Case 2b(i): Suppose there exists p ≥ 0 with 3 + (p+ 2) < 2m such that w3+(p+1) 6= w3+(p+2) (this
is equivalent to supposing that the cycle C contains at least 3 distinct vertices). Let W1, W2, W3

and W4 be the walks
W1 = ({w3, w4}, . . . , {w4+p, w5+p}),

W2 = ({w2m, w2m−1}, . . . , {w6+p, w5+p}),
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W3 = W1 − {w4+p, w5+p},

W4 = W2 + {w5+p, w4+p}

in Ω. Note that since C is odd, one of W1 and W2 must be odd and the other must be even.
Assume that W1 is odd and W2 is even. Then, W3 is even and W4 is odd. A similar argument
works if W1 is even and W2 is odd.
Suppose {w2, w4+p} ∈ E(Ω) or {w2, w5+p} ∈ E(Ω). Then we can construct an even closed walk
Γ1 in Ω such that in(fΓ1) divides in(fΓ) and degx(fΓ1) = 1. This walk is constructed as follows:
suppose first that {w2, w4+p} ∈ E(Ω). Then,

Γ1 = ({w2, w1}, {w1, w2m},W4, {w4+p, w2}).

If {w2, w5+p} ∈ E(Ω), then

Γ1 = ({w2, w1}, {w1, w3},W1, {w5+p, w2}).

Note that in(fΓ1) divides in(fΓ) in both cases (even if w1 = w2, we have that w1 ≤ w5+p because
of the minimality of yw1,w2 and further, w1 < w5+p because 3 ≤ 5 + p ≤ 2m). Hence, we must
have in(fΓ1) = in(fΓ) and on comparing degrees, we get p+5

2
= m. This leads to a contradiction

because p+ 2 < 2m− 3.
Suppose {w2, w4+p} 6∈ E(Ω) and {w2, w5+p} 6∈ E(Ω).
If w1 6= w2, by (*), w2 < w4+p or w2 < w5+p (we already know that w4+p and w5+p are not equal
to w2). If w2 < w4+p, then since w1 < w2, we have {w1, w4+p} ∈ E(Ω). Then we can consider the
even closed walk

Γ2 = ({w1, w2}, {, w2, w2m},W4, {w4+p, w1})

in Ω. Proceeding as above (and using that w2 < w4+p), we get p = 2m − 5, a contradiction. If
w2 < w5+p, we have {w1, w4+p} ∈ E(Ω). In that case, consider the even closed walk

Γ3 = ({w1, w2}, {, w2, w2m},W1, {w5+p, w1})

in Ω and proceed as above.
If w1 = w2, since w1 < w4+p+, by (**), {w1, w4+p} ∈ E(Ω) or {w1, w5+p} ∈ E(Ω). Then we can
construct the walk Γ2 or Γ3 and proceed similarly.
Case 2b(ii): The only case remaining is when C = ({n + 1, j}, {j, j}, {j, n + 1}). The three
possibilities are w1 < w2 < j, w1 < j < w2 and w1 = w2 < j. On applying (*), (**) and (**)
respectively, we get {w1, j} ∈ E(Ω) or {w2, j} ∈ E(Ω) in each case. If {w1, j} ∈ E(Ω), consider
the walk Γ4 = ({w1, w2}, {w2, n + 1}, {n + 1, j}, {j, w1}). As before, we get inΓ4 = inΓ, which is
not possible on comparing degrees. A similar argument works in {w2, j} ∈ E(Ω).

Corollary 6.2.10. Let I be a monomial ideal in S generated in degree 2. Then, I has a linear
resolution iff each power of I has a linear resolution.

Proof. Follows immediately from Theorem 6.2.9 and Corollary 6.2.2.
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6.3 Associated graded modules with pure resolution

Let A = k[[x1, . . . , xn]] and m = (x1, . . . , xn). Let Gm(A) be the associated graded ring of A with
respect to m, that is,

Gm(A) =
⊕
d≥0

md

md+1
.

It is well known that Gm(A) ∼= k[x1, . . . , xn] = S. Let M be a finitely generated A-module and
Gm(M) =

⊕
d≥0 m

dM/md+1M be the associated graded module of M with respect to m.
Note that Gm(M) is a S-module. The goal of this section is to figure out when Gm(M) has a free
S-resolution.
Given any element v ∈M , v ∈ mdM \md+1M for some d ≥ 0. Hence, there is we have an element
in Gm(M) which naturally corresponds to v, and we denote this element by v∗ ∈ mdM/md+1M .
Let φ : Al → Ak be a non-zero A-linear map. There exists s ≥ 0 such that Im(φ) ⊂ msAk and
Im(φ) 6⊂ ms+1Ak. Let φ = (aij) where aij ∈ A. By assumption, aij ∈ ms. Consider φ∗ : Sl → Sk,
φ∗ = (a∗ij). It follows that

φ∗ =
∑
j≥s

φ∗j ,

where φ∗j is a matrix with homogeneous entries of degree j. Set in(φ) = φ∗s. We call in(φ) the
initial form of φ. Set v(φ) = s, the order of φ.
Let

F : 0→ Fp
φp−→→ Fp−1 → · · · → F1

φ1−→ F0 → 0

be a minimal A-resolution of M . Let ci = v(φi) and di =
∑i

j=1 ci for i = 1, . . . , p. Let βi =
βi(M). Since φi ◦ φi+1 = 0 and in(φi) contains only the lowest degree terms of φi, it follows that
in(φi) ◦ in(φi+1) = 0. Hence, we have a complex

in(F) : 0→ S(−dp)βp
in(φp)−−−−→ S(−dp−1)βp−1 → · · · → S(−d1)β1

in(φ1)−−−−→ Sβ0 → 0.

Note that if M is minimally generated by {v1, . . . , vk} as an A-module, then by Nakayama lemma,
vi 6∈ mM . The associated graded module Gm(M) is minimally generated by {v∗1, v∗2, . . . , v∗k} ⊂
M/mM as a S-module. In this case, β0 = k and suppose that the map φ0 : F0 → M was defined
as φ0(wi) = vi.
We thus have a natural S-linear map ε : Sβ0 → Gm(M) defined as ε(wi) = v∗i .

Lemma 6.3.1. With notation as above, ε is surjective and ε ◦ in(φ1) = 0.

Proof. The map ε is surjective as {v∗1, v∗2, . . . , v∗k} is a generating set of M .

Let φ1 = (aij) and in(φ1) = (bij). Since φ0 ◦ φ1 = 0,
∑k

i=1 aijvi = 0 for all j. We need to prove

that
∑k

i=1 bijv
∗
i = 0.

Suppose v(φ1) = d. Then, note that the component of
∑k

i=1 aijvi = 0 in mdM \md+1M is precisely

the sum
∑k

i=1 bijv
∗
i . Hence,

∑k
i=1 bijv

∗
i = 0.
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Lemma 6.3.2. Let F1
φ1−→ F0

φ0−→ M → 0 be part of a minimal resolution of M . Assume that the
minimal resolution of Gm(M) has the form

· · · → Sa(−s) ψ−→ Gm(F0)
ε−→ Gm(M)→ 0,

that is, assume that the first shift is pure. Set N = Im(φ1) and F = {Ni = miF0∩N}i∈Z (mi = S
for i ≤ 0). Then
(i) Ni = mi−sN for all i ≥ 0.
(ii) rank(F1) = a.
(iii) v(φ1) = s
(iv) The sequence

Gm(F1)(−s) in(φ1)−−−−→ Gm(F0)
ε−→ Gm(M)→ 0

can be extended to a minimal resolution of Gm(M).
(v) Im(in(φ1)) ∼= Gm(N)(−s).

Proof. (i) By the Artin-Rees lemma, we know that F is an m-stable filtration. Consider the
module

miF0/m
i+1F0

(miF0 ∩N)/(mi+1F0 ∩N)
∼=

miF0/m
i+1F0

(miF0 ∩N + mi+1F0)/mi+1F0

∼=
miF0

miF0 ∩N + mi+1F0

∼=
miF0/(m

iF0 ∩N)

(miF0 ∩N + mi+1F0)/(miF0 ∩N)

∼=
(miF0 +N)/N

mi+1F0/(mi+1F0 ∩ (miF0 ∩N))

∼=
(miF0 +N)/N

mi+1F0/(mi+1F0 ∩N)

∼=
(miF0 +N)/N

(mi+1F0 +N)/N

∼=
miF0 +N

mi+1F0 +N

∼=
mi(F0/N)

mi+1(F0/N)

∼=
miM

mi+1M
.

(6.2)

Since all the isomorphisms in the above simplification are natural, we have the exact sequence

0→ GF(N)→ Gm(F0)
ε−→ Gm(M)→ 0.
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By the hypothesis above, it follows that GF is generated in degree s. So we have Ni = N for i ≤ s
and

Ns+j

Ns+j+1

= mj Ns

Ns+1

⇒ Ns+j = mjNs +Ns+j+1 = mjN +Ns+j+1,

for j ≥ 1. As F is m-stable, there exists j0 such that Ns+j+1 = mNs+j for all j ≥ j0. For j ≥ j0,
Ns+j = mjN +Ns+j+1 = mjN + mNs+j. By Nakayama Lemma, Ns+j = mjN .
We show by descending induction that Ns+j = mjN for all j ≤ j0. This is true for j = j0 by the
previous argument. Assume Ns+j+1 = mj+1N for some j ≤ j0 − 1. Then,

mj+1N ⊂ mNs+j ⊂ Ns+j+1 = mj+1N.

Hence, Ns+j+1 = mNs+j and Ns+j = mjN + mNs+j. By Nakayama Lemma, Ns+j = mjN .
(ii) By (i), GF(N) = Gm(N)(−s). Hence, the map ψ maps the basis elements of Sa to a minimal
generating set of Gm(N). As observed previously, a minimal generating set of Gm(N) has the same
cardinality as a minimal generating set of N . The cardinality of the minimal generating set of
N = Im(φ1) is rank(F1). Hence, a = rank(F1).
(iii) Set r = v(φ1). By Lemma 6.3.1 and the discussion preceding it, we have a complex

Gm(F1)(−r) in(φ1)−−−−→ Gm(F0)
ε−→ Gm(M)→ 0.

So ker(ε) contains an element of degree r, which forces that s ≤ r by (i). Further, note that
N = Im(φ1) ⊂ mv(φ1)F0 = mrF0. Hence, Nj = N for j ≤ r, which forces that s ≥ r.
(iv) Consider the following sequence

mi−sF1
γi−s−−→ miF0

εi−→ miM → 0,

for i ≥ 0, where γi−s and εi are the restrictions of φ1 and φ0 to mi−sF1 and miF0 respectively.
Observe that ker(εi) = N ∩ miF0 = Ni = mi−sN and the map γi−s naturally maps mi−sF1

surjectively to mi−sN . Hence, the above sequence is exact. We tensor this exact sequence with
A/m to get the exact sequence

mi−sF1

mi−s+1F1

γi−s−−→ miF0

mi+1F0

εi−→ miM

mi+1M
→ 0,

for all i ≥ 0. Thus, we have an exact sequence

Gm(F1)(−s) φ1−→ Gm(F0)
φ0−→ Gm(M)→ 0.

By definition, φ0 = ε. If one thinks of φ1, and hence γi−s, as a matrix, then it follows that the map
γi−s can be represented by the matrix corresponding to in(φ1) (note that s = v(φ1) from (iii)).
Therefore, φ1 = in(φ1). Further, as Gm(F1) = Sa from (ii), we have that in(φ1) maps minimally
onto ker(ε) and hence, the above short exact sequence can be extended to a minimal resolution of
Gm(M).
(v) This follows from the exact sequences in the arguments presented for (i) and (iv) above.
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Theorem 6.3.3. Let M be a finitely generated A-module. Assume that Gm(M) has a pure res-
olution. Let F be a minimal free resolution of M . Then in(F) is a minimal free resolution of
Gm(M).

Proof. We proceed by induction on pdim(M). For pdim(M) = 0, M is free and so is Gm(M).
Thus, the statement of the theorem holds.
Suppose pdim(M) = p ≥ 1. Suppose the free resolution of M is

0→ Fp
φp−→ · · · → F1

φ1−→ F0
φ0−→M → 0,

and let ci = v(φi) and di =
∑i

j=1 cj. Let N = Im(φ1). Since M has a pure resolution, by Lemma
6.3.2,

Gm(F1)(−d1)
in(φ1)−−−−→ Gm(F0)→M → 0

can be extended to a minimal resolution of Gm(M), and Im(in(φ1)) = Gm(N)(−d1). Hence, Gm(N)
has a pure resolution as well. Since pdim(N) = p− 1, by the induction hypothesis,

0→ Gm(Fp)(−dp + d1)
in(φp)−−−−→ · · · → Gm(F1)(−d1 + d1)

in(φ1)−−−−→ Gm(N)→ 0

is a minimal resolution of Gm(N). It follows that

0→ Gm(Fp)(−dp)
in(φp)−−−−→ · · · → Gm(F1)(−d1)

in(φ1)−−−−→ Gm(F0)→M → 0,

which is precisely in(F), is a minimal resolution of M .

To prove the next major result, we require the following technical lemma.

Lemma 6.3.4. Let R be a Noetherian local ring and N be a Cohen-Macaulay R-module. Suppose
K is a non-zero submodule of N . Then, dim(K) = dim(N).

Proof. The proof follows by induction on dim(N). The statement is trivial for dim(N) = 0.
Assume that the statement of the lemma holds for dim(N) < d. Suppose dim(N) = d ≥ 1. Let
K be a non-zero submodule of N . There exists x ∈ R such that x is a nonzerodivisor on N ,
and K 6⊂ xN (by Krull’s intersection theorem). Then, N/xN is a Cohen-Macaulay R-module of
dimension d− 1. Note that K/(K ∩ xN) naturally injects properly into N/xN and hence, by the
induction hypothesis, dim(K/(K ∩ xN)) = dim(N/xN) = d− 1.
Observe that since xK ⊂ K∩xN , K/xK naturally maps onto K/(K∩xN). Hence, dim(K/xK) ≥
d−1. The element x is also a nonzerodivisor on K, which forces dim(K/xK) = dim(K)−1. Hence,
dim(K) ≥ d, and further, dim(K) = d as K is a submodule of N .

Theorem 6.3.5. Let M be a Cohen-Macaulay A-module and let p = pdim(M). Let βi = βi(M)
and

F : 0→ Fp
φp−→→ Fp−1 → · · · → F1

φ1−→ F0 → 0
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be a minimal resolution of M . Let ci = v(φi) and di =
∑i

j=1 cj. The following conditions are
equivalent:
(i) Gm(M) has a pure resolution.
(ii) The following hold:

(a) in(F) is acyclic.

(b) βi = biβ0 for i = 1, . . . , p, where bi = (−1)i−1
∏

j 6=i
dj

dj−di .

(c) The multiplicity of M ,

e0(M) =
β0

p!

p∏
i=1

di.

Proof. Suppose Gm(M) has a pure resolution. By Theorem 6.3.3, in(F) is a minimal resolution
of Gm(M) and hence, βi(Gm(M)) = βi and the shifts of the minimal resolution of Gm(M) are
d1, . . . , dp. Recall that dim(M) = dim(Gm(M)) ([5], Theorem 4.5.6). By the Auslander-Buchsbaum
formula, depth(Gm(M)) = n − pdim(Gm(M)) = n − pdim(M) = depth(M). Hence, Gm(M) is
Cohen-Macaulay. The statements (ii)(b) and (ii)(c) thus follow from Theorem 6.1.2 and [4] (page
88).
Conversely, if in(F) is acyclic and the Betti numbers satisfy the Herzog-Kühl conditions, then
by Theorem 6.1.2, E = coker(in(φ1)) is Cohen-Macaulay of dimension n − p (by the Auslander-
Buchsbaum formula). Recall that we also have a surjective homomorphism ε : Gm(F0)→ Gm(M)
with ε ◦ in(φ1) = 0. Therefore, Im(in(φ1)) ⊂ ker(ε) and we have an exact sequence

0→ K → E → Gm(M)→ 0.

Note that dim(K) ≤ dim(E) = dim(Gm(M)). As multiplicity of E equals multiplicity of Gm(M),
the degree of the Hilbert polynomial ofK must be smaller than the degree of the Hilbert polynomial
of E and hence, dim(K) < dim(E). By Lemma 6.3.4, K = 0. So Gm(M) ∼= E has a pure
resolution.
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Chapter 7

Explicit construction of some resolutions

7.1 The Taylor resolution

Let S = k[x1, . . . , xn] and f1, . . . , ft be non-constant monomials in S.
Let Fs be the free module on the basis elements {vI : I ⊂ {1, . . . , t}, |I| = s}. Set fI = LCM(fi :
i ∈ I). Let Fφ = 1.
Suppose I = {i1, . . . , is} ⊂ {1, . . . , t} and J ⊂ {1, . . . , t}, |J | = s− 1. Then, define

cIJ =

{
0 J 6⊂ I

(−1)kfI/fJ if I = J ∪ {ik} for some k.

Define ds : Fs → Fs−1 as ds(vI) =
∑

J cIJvJ . Finally, define the Taylor’s complex T (f1, . . . , ft) to
be

0→ Ft
dt−→ Ft−1 → · · · → F1

d1−→ F0 → 0.

We prove that the Taylor’s complex is a resolution of S/〈f1, . . . , ft〉 by induction on t. The base
case t = 1 is clear. Assume that T (h1, . . . , ht) is a resolution of S/(h1, . . . , ht) for any monomials
h1, . . . , ht ∈ S.
Consider monomials f1, . . . , ft+1 in S. For i = 1, . . . , t, let gi = fi/GCD(fi, ft+1). By the induction
hypothesis, T (g1, . . . , gt) is a resolution of S/(g1, . . . , gt). Consider the short exact sequence

0→ S/(g1, . . . , gt)
−ft+1−−−→ S/(f1, . . . , ft)→ S/(f1, . . . , ft+1)→ 0.

The first map in this short exact sequence can be induced to a map of complexes
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0 0

Gt Ft

...
...

G2 F2

G1 F1

G0 F0

S/(g1, . . . , gt) S/(f1, . . . , ft) S/(f1, . . . , ft+1)

δt

ϕt

dt

δ2

ϕ2

d2

δ1

ϕ1

d1

ϕ0

ft+1

where Gs is a free module on the basis elements {wI : I ⊂ {1, . . . , t}, |I| = s}, δs is the usual map
in the Taylor complex and ϕs(wI) = −(gI/fI)ft+1vI for s ∈ {1, . . . , t}.

Claim: diφi = φi−1δi for all i ≥ 1.

Proof. Let I ⊂ S, |I| = i and Λ = {J ⊂ {1, . . . , t} : |J | = i− 1} Then,

diφi(wI) = di(−(gI/fI)ft+1vI) = −(gI/fI)ft+1

∑
J∈Λ

cIJvJ ,

where

cIJ =

{
0 J 6⊂ I

(−1)kfI/fJ if I = J ∪ {ik} for some k.

On the other hand,

φi−1δi(wI) = φi−1(
∑
J∈Λ

bIJwJ) = −ft+1

∑
J∈Λ

bIJ(gJ/fJ)vJ ,

where

bIJ =

{
0 J 6⊂ I

(−1)kgI/gJ if I = J ∪ {ik} for some k.

In both cases, the coefficient of vJ if J ∪ ik = I is precisely (−1)kgI/fJ .
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Note that deg((gI/fI)ft+1) = deg(LCM(fI , ft+1)/fI) ≥ 1, which implies that all the elements of
the matrix corresponding to φi belong to the homogeneous maximal ideal 〈x1, . . . , xn〉. Hence,
using the mapping cone theorem, we have a resolution of S/(f1, . . . , ft+1)

H• : 0→ Ht+1
εt+1−−→ Ht → · · · → H1

ε1−→ H0 → 0,

where H0 = F0 and Hi = Gi−1 ⊕ Fi for i ≥ 1. The maps εi : Hi → Hi−1 are defined as

εi(g, f) = (δi−1(g),−di(f)− φi−1(g)).

Observe that Hi is a free module on the basis elements {wI : I ⊂ {1, . . . , t}, |I| = i−1}∪{vI : I ⊂
{1, . . . , t}, |I| = i}. Consider the following basis of Hi: {uI : I ⊂ {1, . . . , t+ 1}, |I| = i}, where

uI =

{
wI−{t+1} t+ 1 ∈ I
(−1)|I|+1vI t+ 1 6∈ I.

Suppose t+ 1 ∈ I and |I| = i. Let Λi = {J ⊂ {1, . . . , t} : |J | = i}. Then,

εi(uI) = εi(wI−{t+1})

= (δi−1(wI−{t+1}),−φi−1(wI−{t+1}))

= (
∑

J∈Λi−2

bIJwJ , (gI−{t+1}/fI−{t+1})ft+1vI−{t+1})

= (
∑

J∈Λi−2

bIJuJ , (−1)i+1(gI−{t+1}/fI−{t+1})ft+1uI−{t+1})

= (
∑

J∈Λi−2

bIJuJ , aIJuI−{t+1})

=
∑

J∈Λi−1

aIJuJ .

(7.1)

In the above computation, the following simplification has been used: for I ⊂ {1, . . . , t},

gIft+1 = LCM(
fi

GCD(fi, ft+1)
: i ∈ I)ft+1

= LCM(
LCM(fi, ft+1)

ft+1

: i ∈ I)ft+1

= LCM(fi : i ∈ I ∪ {t+ 1}).

(7.2)

Suppose t+ 1 6∈ I and |I| = i. Then,

εi(uI) = εi((−1)|I|+1vI)

= (0,−(−1)|I|+1di(vI))

= (0, (−1)|I|
∑
J∈Λi

cIJvJ)

=
∑

J∈Λi−1

aIJuJ .

(7.3)
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The differentials maps ε are hence precisely the maps in the Taylor complex whose free modules
are generated by uI ’s. Hence, we have proved by induction that the Taylor complex provides a
resolution of monomial ideals.
The Taylor’s resolution need not be minimal. For example, suppose S = k[x1, x2, x3], f1 = x1x2,
f2 = x2x3, f3 = x1x3. Let I = {1, 2, 3} and J = {1, 2}. Then, fI = fJ = x1x2x3 and cIJ =
(−1)3fI/fJ = −1 6∈ 〈x1, x2, x3〉.
However, if I is a stable ideal, we can construct a minimal free resolution of I.

7.2 The Eliahou-Kervaire resolution

Let S = k[x1, . . . , xn].
Suppose I is a monomial ideal in S. We denote by G(I) a minimal generating set of I. Given a non-
constant monomial a = xa11 . . . xann , let max(a) = max{i : ai > 0} and min(a) = min{i : ai > 0}.
Define min(1) =∞.
Recall that a monomial ideal I is said to be stable if for every monomial w ∈ I, xiw/xmax(w) ∈ I
for all i < max(w). We begin with some lemmas on stable ideals which shall be needed in the
construction of the Eliahou-Kervaire resolution.

Lemma 7.2.1. Let I be a stable monomial ideal with canonical generating set G(I). For every
monomial w ∈ I, there is a unique decomposition

w = u.y

with u ∈ G(I) and max(u) ≤ min(y).

Proof. Given a monomial w ∈ I, there exists v ∈ G(I) and z ∈ S such that w = v.z.
Suppose max(v) > min(z). Let i = min(z) and m = max(v). Then, by the stability hypothesis,
xiv/xm ∈ I and hence we can write

w = (xiv/xm).(xmz/xi),

where xiv/xm is itself a multiple of some monomial v′ ∈ I. Hence, w = v′.z′ for some suitable
monomial z′ ∈ S.
Note that on passage from v = xb11 . . . xbnn to v′, the non-negatively valued function f(v) =

∑n
i=1

is strictly decreasing. Hence, after finitely many iterations of the above process, we must have
w = u.y, where u ∈ G(I) and max(u) ≤ min(y).
Suppose w = u.y = u′.y′, where u, u′ ∈ G(I), max(u) ≤ min(y) and max(u′) ≤ min(y′), then u, u′

are both initial segments of u and one of them must divide the other. Since u, u′ ∈ G(I), this
forces that u = u′ and hence, y = y′. Thus, the decomposition is unique.

This unique decomposition of a monomial w ∈ I will be called the canonical I-decomposition
of w.
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For a stable ideal I, let M(I) denote the set of all monomials in I. Define the decomposition
function

g : M(I)→ G(I)

by g(w) = u if w = u.y is the unique I-canonical decomposition of w.

Lemma 7.2.2. Let I be a stable ideal and let g : M(I)→ G(I) be its decomposition function. Then
for all w ∈M(I), and all monomials y, the equation g(wy) = g(w) holds iff max(g(w)) ≤ min(y).

Proof. Suppose g(wy) = g(w). Then the canonical decomposition of wy reads

wy = g(wy).z = g(w).z,

where max(g(w)) ≤ min(z). Since g(w) divides w, y must divide z, which forces that min(z) ≤
min(y). Hence, max(g(w) ≤ min(y).
Suppose max(g(w)) ≤ min(y). Suppose the canonical decomposition of w is w = g(w).z, max(g(w)) ≤
min(z). Then wy = g(w).yz is the canonical decomposition of wy, since max(g(w)) ≤ min(yz).
Therefore, g(wy) = g(w).

Lemma 7.2.3. Let I be a stable monomial ideal with decomposition function g : M(I) → G(I).
Then, for any monomial a and any w ∈M(I),
(i) g(ag(w)) = g(aw),
(ii) max(g(aw)) ≤ max(g(w)).

Proof. (i) Assume first that a = xi.
Case 1 : If i ≥ max(g(w)), then g(xiw) = g(w) by Lemma 7.2.2 and g(w).xi is itself a canonical
decomposition of g(w)xi, which implies that g(xig(w)) = g(w).
Case 2 : If i < max(g(w)), then g(xiw) = g(xig(w)y) for some monomial y ∈ S with max(g(w)) ≤
min(y). Note that max(xig(w)) = max(g(w)) ≤ min(y). Hence, by Lemma 7.2.2, g(xiw) =
g(xig(w).
For an arbitrary monomial a, the proof follows by induction on the degree of a. For example,
g(xixjw) = g(xig(xjw)) = g(xixjg(w)).
(ii) As in (i), it suffices to prove the statement for a = xi, as the rest of the proof follows by
induction on degree.
If i ≥ max(w), then g(xiw) = g(w) by Lemma 7.2.2.
If i < max(w), then

max(g(xig(w))) ≤ max(xig(w)) ≤ max(g(w)),

and since g(xiw) = g(xig(w)) by (i), we have max(g(xiw)) ≤ max(g(w)).

Lemma 7.2.4. Let w ∈M(I) be a monomial in I and let a be a monomial in S. Then

g(a.w) ≤ g(w)

in the graded reverse lexicographic order.
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Proof. Again, it suffices to prove the statement for a = xi.
If max(g(w)) ≤ i, then g(xiw) = g(w) by Lemma 7.2.2, and the statement follows trivially.
If max(g(w)) > i, let

xig(w) = g(xig(w)).y = g(xiw).y

with max(g(xiw)) ≤ min(y) be the canonical decomposition of xig(w) (the second equality is by
Lemma 7.2.3).
We must have deg(y) > 0, since deg(y) = 0 would imply that g(xiw) ∈ G(I) is a proper multiple
of g(w) ∈ G(I). Hence, deg(g(xiw)) ≤ deg(g(w)).
If deg(g(xiw)) < deg(g(w)), g(xiw) < g(w) in the graded reverse lexicographic order. If deg(g(xiw)) =
deg(g(w)), then deg(y) = 1, that is, y is a variable, say, xj.
Since i < max(g(w)), and max(g(xiw)) ≤ j, it follows that j = max(g(w)). The equation xig(w) =
g(xiw)xj forces that the exponent of xj in g(w) is strictly larger than the exponent of xj in g(xiw).
Since max(g(xiw)) ≤ j, g(xiw) < g(w) as desired.

We now proceed to describe the minimal graded free resolution (L∗(I), d) of an arbitrary stable
monomial ideal I ⊂ S.
Define a symbol e(i1, . . . , iq;u) to be admissible if the following three conditions are satisfied:
(i) u ∈ G(I).
(ii) i1, . . . , iq are integers such that 1 ≤ i1 < · · · < iq ≤ n.
(iii) iq < m = max(u).
In this definition, q may be 0.
Let Lq = Lq(I) be the free S-module on the set of all admissible symbols e(i1, . . . , iq;u) for fixed
q ≥ 0. In particular, L0(I) is the free S-module with set of generators e(u) for u ∈ G(I).
We define the map of S-modules

α : L0 → I

by α(e(u)) = u.
In order to define d : Lq → Lq−1 for q ≥ 1, we need some more notations as follows: Let
e(i1, . . . , iq;u) be an admissible symbol. Denote by σ the sequence (i1, . . . , iq). If σ = (i1, . . . , iq),
we denote by σr the sequence σr = (i1, . . . , îr, . . . , iq) in which ir has been deleted.
Let ur = g(xiru) and yr = xiru/ur. Then, by definition, max(ur) ≤ min(yr). We write mr =
max(ur) and denote by A(σ;u) ⊂ {1, . . . , q} the set of values of r for which max(i1, . . . , îr, . . . , iq) <
mr, or equivalently, the set of values of r for which e(σr;ur) is an admissible symbol.
The map d : Lq → Lq−1 is the S-module map determined by

de(σ;u) =

q∑
r=1

(−1)rxire(σr;u)−
∑

r∈A(σ;u)

(−1)ryre(σr;ur).

Remark 7.2.5. Observe that since xir is not a minimal generator of I, it follows that deg(yr) ≥ 1
and thus, d(Lq) ⊂ 〈x1, . . . , xn〉Lq−1.
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The module Lq(I) is endowed with a natural multigrading defined by

deg(z.e(i1, . . . , iq;u)) = zxi1 . . . xiqu,

for q ≥ 1 and deg(z.e(u)) = zu. Note that the maps d : Lq → Lq−1, as well as α : L0 → I, preserve
the multigrading.

Theorem 7.2.6. (L∗(I), d) as described above is a minimal free graded resolution of I over S.

Proposition 7.2.7. (L∗(I), d) as described above is a complex.

Proof. We first need to check that (L∗(I), d) is a complex. To do so, we will exhibit (L∗(I), d) as
the quotient of another complex.
Let Cq be the free R-module on all symbols e(i1, . . . , iq) satisfying only the two conditions
(i) u ∈ G(I).
(ii) i1, . . . , iq are integers such that 1 ≤ i1 < · · · < iq ≤ n.
Define D : Cq → Cq−1 to be the R-module map determined by

De(σ;u) =

q∑
r=1

(−1)rxire(σr;u)−
q∑
r=1

(−1)ryre(σr;ur),

where, as before, ur = g(xiru) and yr = xiru/ur.
To prove that (C∗, D) is a complex, it is convenient to cut the operator D in two: Let D = D1−D2,
where

D1e(σu) =

q∑
r=1

(−1)rxire(σr;u),

D2 =

q∑
r=1

(−1)ryre(σr;ur).

Let σ = {i1, . . . , iq}, σr = {i1, . . . , îr, . . . , iq} = {j1, . . . , jq−1} and σr,s = σs,r = {i1, . . . , îr, . . . , îs, . . . , iq}
for r < s. Let u′s = g(xjsu) and y′s = xjsu/u

′
s for s = 1, . . . , q − 1.

D2
1(e(σ;u)) =

q∑
r=1

(−1)rxirD1(e(σr;u))

=

q∑
r=1

(−1)rxir

q−1∑
s=1

(−1)sxjse((σr)s;u)

=

q∑
r=1

q−1∑
s=1

(−1)rxirxjse((σr)s;u).

(7.4)

For k < t, the basis element e(σkt;u) appears in two summands in the above summation: once
when r = k,s = t− 1 with coefficient (−1)k+t−1xikxit and once when r = t,s = k with coefficient
(−1)k+txikxit . Hence, D2

1 = 0.
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(D2D1 +D1D2)(e(σ;u)) =

q∑
r=1

q−1∑
s=1

(−1)rxir(−1)sy′se((σr)s;u
′
s) +

q∑
r=1

q−1∑
s=1

(−1)ryr(−1)sxjse((σr)s;ur).

(7.5)

For k < t, the basis element e(σkt;ur) appears in two summands in this summation: once when
r = k, s = t − 1 with coefficient (−1)k+t−1xiky

′
t−1 = (−1)k+t−1xikyt and once when r = t, s = k

with coefficient (−1)k+tytxik . Hence, D2D1 +D1D2 = 0.
Finally, in order to calculate D2

2(e(σ;u)), let

urs = g(xirxisu)

and let yrs = xirg(xisu)/g(xirxisu). By Lemma 7.2.3(i), urs = g(xirg(xis)u) = g(xisg(xir)u), and
thus

D2
2e(σ;u) =

∑
1≤s<r≤n

(−1)r+syrysre(σsr;usr)

+
∑

1≤r<s≤n

(−1)r+s−1yrysre(σrs;urs).
(7.6)

Clearly, yrysr = ysyrs and hence, D2
2 = 0. Thus, D2 = 0.

Let Nq ⊂ Cq be the submodule generated by the symbols e(i1, . . . , iq;u) with max(u) ≤ iq. We
claim that N∗ is a subcomplex of C∗, that is, D(Nq) ⊂ Nq−1.
Indeed, if max(u) ≤ iq, Lemma 7.2.2 forces uq = g(xiqu) = u and hence, yq = xiq . Hence, the
last term (−1)qyqe(σq;uq) in D2e(σ;u) coincides with the last term (−1)qxiqe(σq;u) of D1(σ;u).
It follows that if max(u) ≤ iq, then

De(σ;u) =

q−1∑
r=1

(−1)rxire(σr;u)−
q−1∑
r=1

(−1)ryre(σr;ur).

Since, by Lemma 7.2.3(ii),

max(ur) = max(g(xir)u) ≤ max(g(u)) = max(u) ≤ iq,

and iq is the last index in σr for r = 1, . . . , q − 1, it follows that De(σ;u) ∈ Nq−1.
Clearly, L∗ = C∗/N∗ and the boundary operator d : Lq → Lq−1 is induced by the boundary
operator D on C∗. Hence, d2 = 0. The vanishing of the composition α ◦ d is easily verifiable by
direct computation. Hence, (L∗(I), d) is a complex.

In order to prove ker(dq) ⊂ Im(dq+1), we define a ”normal form” to which every element of Lq
may be reduced modulo Im(dq+1) and show that ker(dq), respectively ker(α), contains no normal
element except 0.
Let B be the natural k-basis for Lq, that is, B contains the elements z.e(σ;u) where z is a monomial
in S and e(σ;u) is an admissible symbol. Elements of B are called terms.
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Definition 7.2.8. A term z.e(i1, . . . , iq;u) will be called normal if z = 1, or if min(z) ≥ i1, when
q ≥ 1, or min(z) ≥ max(u) when q = 0.
An element f ∈ Lq is normal if it is a linear combination of normal terms. The element 0 is
normal.

Given two sequences σ = (i1, . . . , iq), σ
′ = (j1, . . . , jq) of the same length q, define σ < σ′ if

xi1xi2 . . . xiq < xj1 . . . xjq in the graded reverse lexicographic order. Given two terms z.e(σ;u),
z′.e(σ′;u′) in Lq, define z.e(σ;u) < z′.e(σ′;u′) if either u < u′, or u = u′ and σ < σ′, or e(σ;u) =
e(σ′;u′) and z < z′.

Lemma 7.2.9. Let a = e(i0, . . . , iq;u) be a term in Lq+1, q ≥ 0. Then xi0e(i1, . . . , iq;u) is the
biggest term in d(a).

Proof. Let σ = (i0, i1, . . . , iq). We have

de(σ;u) =

q∑
r=0

(−1)r+1xire(σr;u)−
∑

r∈A(σ;u)

(−1)r+1yre(σr;ur).

By Lemma 7.2.2, since ir < max(u) for all r = 0, . . . , q, g(xiru) 6= g(u) = u. By Lemma 7.2.4,
ur = g(xir)u < u. Thus all terms in the second sum are strictly smaller than xi0e(σ0;u). Further,
since σr < σ0 for all r ≥ 1, it follows that xi0e(σ0;u) is indeed the biggest term in de(σ;u).

Lemma 7.2.10. Let b = ze(i1, . . . , iq;u) be a non-normal term in Lq, q ≥ 0. Then b is congruent
modulo Im(dq+1) to an element whose terms are all strictly smaller than b.

Proof. Let i = max(z). We have i < i1 (respectively i < max(u) for q = 0), since b is assumed to
be non-normal.
Consider the term a = (z/xi).e(i, i1, . . . , iq;u) ∈ Lq+1. By Lemma 7.2.9, b is the biggest term in
d(a) (and has coefficient -1). Thus, all terms in b+ d(a) are strictly smaller than b.

Proposition 7.2.11. Any element in Lq, q ≥ 0, is congruent to some normal element modulo
Im(dq+1).

Proof. Let f ∈ Lq. Suppose f is non-normal. By Lemma 7.2.10, we can replace any non-normal
term in f by a combination of strictly smaller terms, not changing the class of f modulo Im(dq+1).
When iterated, this process must end up with a normal element in finitely many steps because d
preserves the multigrading, and there are only finitely many terms with a given multidegree.

Lemma 7.2.12. Let b be a normal term in Lq, q ≥ 0. Let b′ be any term in Lq and assume that
the biggest term in d(b) actually appears among the terms in d(b′). Then b ≤ b′.

Proof. Assume first q = 0. Then b and b′ have the form b = y.e(u), b′ = z.e(v). Since α(b) = uy,
α(b′) = vz, the hypotheses amount to uy = vz and max(u) ≤ min(y), by normality of b. Thus,
u.y is the canonical decomposition of vz, and so u = g(vz). By Lemma 7.2.4, we conclude u =
g(vz) ≤ g(v) = v, and so b ≤ b′.
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Assume now q ≥ 1. Let b = y.e(i1, . . . , iq;u), b′ = z.e(j1, . . . , jq; v). By hypothesis, c =
xi1ye(i2, . . . , iq;u), the biggest term in d(b) according to Lemma 7.2.4, appears as a term in d(b′).
If it appears as a term of the second kind, that is,

xi1ye(i2, . . . , iq;u) = zrze(j1, . . . , ĵr, . . . , jq; g(xjrv)),

where zr = xjrv/g(xjrv), then u = g(xjrv) < g(v) = v by Lemma 7.2.4, and so b < b′.
If c is equal to a term in d(b′) of the first kind, that is,

xi1ye(i2, . . . , iq;u) = xjrze(j1, . . . , ĵr; v),

then u = v. We compare the sequences: if r > 1, then we have is = js for r + 1 ≤ s ≤ q and
ir = jr−1 < jr. Hence, (i1, . . . , iq) < (j1, . . . , jq) and b < b′.
If r = 1, we have (i2, . . . , iq) = (j2, . . . , jq) and xi1y = xj1z. By normality of b, we have i1 =
min(xi1y) = min(xj1z). Hence, i1 ≤ j1. If i1 = j1, this implies b = b′. If i1 < j1, then (i1, . . . , iq) <
(j1, . . . , jq) and b < b′.

Proposition 7.2.13. Let f be a non-zero normal element in Lq, q ≥ 0. Then d(f), respectively
α(f), is non-zero.

Proof. Let b be the biggest term in f and c the biggest term in d(b), respectively α(b). By Lemma
7.2.12, c cannot cancel against any other term in d(f), respectively α(f). Hence d(f), respectively
α(f), is non-zero.

This finishes the proof of Theorem 7.2.6.
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