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Summary

This report is divided into seven chapters. In chapter one, graded resolutions are introduced
and some related fundamental results are proved. In chapter two, we discuss Grobner bases and
Schreyer’s algorithm to compute a (not necessarily minimal) free resolution of a finitely generated
module M over a polynomial ring S in finitely many variables. Hilbert’s syzygy theorem follows
as a corollary.

In the third chapter, we compare the homological invariants of an ideal with its initial ideal. We
also introduce the concept of polarization, which, given a polynomial ideal, produces a related
squarefree ideal in a larger polynomial ring, with the same homological invariants as the original
ideal. We also introduce the lexsegment ideal [ lex of a graded polynomial ideal 7, and show
that S/I and S/I'®X have the same Hilbert function. In chapter four, we prove the Auslander-
Buchsbaum-Serre Theorem, which characterizes regular local rings. While doing so, we also prove
that the Koszul complex is contained in the minimal resolution of k for any Noetherian local ring
(R,m, k).

In chapter five, we prove certain results on the existence of bounds on projective dimension and
regularity of an ideal. We present a result by Burch which constructs ideals with arbitrarily large
projective dimension, but generated by just 3 elements, in a Cohen-Macaualay ring. We also
prove that Stillman’s question on upper bounds on projective dimension is equivalent to a similar
question on upper bounds on regularity. We end chapter five by discussing Koszul algebras and
proving a result by Avramov and Eisenbud which states that the regularity of any module over a
Koszul algebra is finite.

Chapter six discusses pure resolutions and begins with a theorem by Herzog and Kiihl on when
a Cohen-Macaulay module over a polynomial ring can have a pure resolution. We then discuss
Herzog, Hibi and Zheng’s results on when each power of a quadratic monomial ideal can have
a linear resolution. We also discuss a couple of results by Puthenpurakal on when associated
graded modules have pure resolutions. In chapter seven, we construct the Taylor’s resolution, a
(not necessarily minimal) free resolution of any monomial ideal. We also construct the Eliahou-
Kervaire resolution, a minimal free resolution of any stable monomial ideal.
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Chapter 1

Graded Rings, Modules and Resolutions

1.1 Graded Rings and Modules

Definition 1.1.1. Let H be a cancellative monoid under addition. A ring R is said to be H-

graded if R = @ R;, where, each R; is an abelian group and R;R; C R, ;, for alli,j € H.

ieH
For each i, R; is called the homogeneous component of degree i of R and the nonzero elements
of R; are called homogeneous elements of degree 1.

Remark 1.1.2.

(i) For a cancellative monoid H, we denote its associated group by G.

(ii) By an ordered monoid we mean a cancellative monoid H with an order < satisfying: whenever
a<bin H, we have a+c < b+ cforall ce H.

(iii) If H is an ordered monoid, then we say that it is well ordered if every nonempty subset S of
H which is bounded below has the least element in S.

Definition 1.1.3. A module M is called as a graded module over a graded ring R if M = @ M;,
ied

as a direct sum of subgroups of M and for allt € H,j € G, R;M; C M;,;.

Definition 1.1.4. An ideal J of a graded ring R is said to be graded if it satifies any of the

following equivalent conditions:

(i) If f € J, then every homogeneous component of f is in J.

(i1) J = @iend;, where J; = R; () J.

(111) If J' is the ideal generated by all homogeneous elements in J, then J = J'.

(iv) J has a system of homogeneous generators.

Proposition 1.1.5. Given a graded ideal I in a graded ring R, every associated prime of I is also
graded.

Proof. Suppose J = (I : x) is a prime ideal for some = in R. Let x = x; + 2,41 + - - - + 2} where
r; € R;, | < k and x;, x) are non-zero.



Let y=vy+ 41+ +ys € J, where y; € R;, t < s and x4, s are non-zero. If we show that
y: € J, we are done by induction on s — t.

To see this, observe that we have xy € I and since [ is graded, the lowest graded component of
xy, which is x;y;, belongs to I. Similarly, ;1 1y; + 241 € I, and on multiplying by v;, we get
that ;1192 € I. Continuing in this manner, we get that x;;y;"' € [ for all i = 0,1,...,k — 1,
which implies that "'z € I and hence, yf~"*' € J. Since J is prime, y, € J. Hence, J is a

graded ideal. ]

Definition 1.1.6. Let R be a H-graded ring and M = € M; be a finitely generated R-module.
i€G
Then we define an R-module M(d) by M(d) = @ M;1q. M(d) is called a shifted R-module.
ied

Definition 1.1.7. Let M = @ M;, M’ = @ M], be graded modules over R. An R-linear map
i€G i€G

[+ M — M’ is said to be a graded map of degree d if f(M;) C M, for alli € G. If [ has

degree zero, we simply say that f is a graded R-module homomorphism.

Proposition 1.1.8. Let R be nonnegatively graded, M, N be graded R-modules and ¢ : M — N
be a graded homomorphism of degree d. Then

(i) ker(¢) is a graded submodule of M.

(11) Im(¢) is a graded submodule of N.

Proof. (i) It is clear that ker(¢) is a submodule of M considered without grading. To show that
ker(¢) is graded, it suffices to show that if = x, + - - - + x4, is in ker(¢), then each x; is in ker(¢).
We show that x, € ker(¢) and by induction we will get that x; € ker(¢) for all i. Note that
¢(z;) € Nirq. Therefore ¢(x,) € Nppa N (Nig1)y4a ® - - - ® Nyyq) = 0. This shows that ¢(z,) = 0
as desired.

(ii) It is clear that Im(¢) is a submodule of N considered without grading. To show that Im(¢)
is graded, it suffices to show that if y = y, + - - - + ys, is in Im(¢), then each y; is in Im(¢). Since
®(M;) € Nivg and y € Im(¢), there exists * = x4+ -+ + x5_q € M such that ¢(x) = y and
¢(xi—q) = y;. This shows that y; € Im(¢). This completes the proof. O

Remark 1.1.9.

(i) If I is a graded ideal of R, then we have R;I; C I;y;.

(ii) If I is a graded ideal of R, then the quotient ring R/ inherits the grading from R by (R/I); =
R;/1;.

(iii) If N is a graded submodule of a graded module M, then M/N is graded with the grading

Proposition 1.1.10. Tensor products of graded R-modules is graded, i.e., if M and N are graded
R-modules, then M ® N 1is graded R-module.

Proof. We know that M ® N is an R-module. We give grading to M ® N as follows:
Define (M @ N); to be generated (as a Z-module) by all the elements in M ® N of the form m ®mn,



where deg(m) + deg(n) = i¢. Then we have M @ N = @ (M ® N);. Moreover, for any r; € R; and
i€G
mén e (M® N);, we have r(m ® n) = (rm) ® n. Therefore

deg(r(m @n)) = (i + deg(m)) + deg(n) =i+ j.

This shows that R;(M ® N); C (M ® N);+,;. Hence M ® N is graded.
UJ

Let Hom;(M,N) ={¢: M — N | deg(¢) = i}. Then we define *Hom(M, N) = @ Hom;(M, N).
ieq

Remark 1.1.11. In general, *Hom(M, N) # Hom(M, N). However, we have the equality in a

special case which we will prove shortly.

Lemma 1.1.12. Let M = @ R(n;) and N be graded R-modules. Then *Hom(M, N) = Hom(M, N)
i=1
with grading forgotten.

Proof. 1t is clear that every ¢ = ¢, + -+ + ¢ € *Hom(M, N) is in Hom(M, N), and hence
*Hom(M, N) C Hom(M, N). To show the other inclusion assume that ¢ € Hom(M, N). Let
e; = (0,...,0,1,0,...,0) where 1 occurs at jth place. Then M is a free R-module with basis
{er, .. em}. I @(e;) = yj1 + -+ y;r, € N, then we have

¢:¢11+"'¢1r1+"'+¢m1+"'+¢mrm

where ¢;5 : M — N is given by ¢js(e;) = y;s and ¢;s(e;) = 0 for all i # j. Note that each ¢,
is well defined since {es,..., ey} is a basis for M. Moreover ¢, is a graded homomorphism of
degree deg(y;s) + n;. Therefore ¢ € *Hom(M, N). This completes the proof. O

Proposition 1.1.13. Let R be a graded Noetherian ring, M be a finitely generated graded R-
module and N be any graded R-module. Then *Hom(M, N) = Hom(M, N) with grading forgotten.

Proof. 1t is clear that every ¢ = ¢, + -+ + ¢ € *Hom(M, N) is in Hom(M, N), and hence we

have an inclusion *Hom(M, N) SN Hom(M, N).
Since M is finitely generated and R is Noetherian, we get an exact sequence of graded modules

G — F — M — 0 for some F' = @ R(n;) and G = @ R(m;). By the previous lemma we have

*Hom(F, N) = Hom(F, N), *Hom(G N) = Hom(G, N) Thus we have the following commutative
diagram:
0 —— *Hom(M, N) —— *Hom(F,N) —— *Hom(G, N)

L | |

0 —— Hom(M, N) —— Hom(F,N) —— Hom(G, N)

Thus by five lemma, we get that the inclusion ¢ is an isomorphism. ]
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Lemma 1.1.14 (Graded Nakayama Lemma). Let H be an ordered monoid such thati > 0 for all
i€ H\ {0} and R = @ R; be a graded ring. Let M = @ M; be an R-module such that there

icH el
exists n € G with M; = 0 for all i < n. Further assume that G is well ordered. If Ry = @ R;
ieH\{0}
and R, M = M then M = 0.

Proof. Let, if possible, M # 0. Let m be the smallest element of G such that for all i < m, we
have M; = 0 and M,, # 0. But then, M = R, M C @@ M;, which has m'* component equal to 0.

im

This contradiction shows that M = 0. ]

Corollary 1.1.15. Let R be a non negatively graded ring and M be a finitely generated Z-graded
R-module. If Ry M = M then M = 0.

Proof. Let {my,...,m,} be a generating set for M and d=min{deg(m;) | 1 <i < r}. Since R is
graded by NU{0}, we get that M,, = 0, for every n < d. Thus, applying graded Nakayama lemma
proved above, we get M = 0. O]

1.2 Graded Resolutions

From now on we assume that R is a graded ring with Ry = k, a field. We will mostly consider
R =Klzy,...,x,].

Definition 1.2.1. Let M be a graded R-module and

Foiooom By 2 By 228 9 1 2 M0

be a free resolution of M. If all F;’s are graded R-modules and all ¢;’s are graded maps of degree
zero, then we say that Fy is a graded free resolution of M.

Definition 1.2.2. Let R = k[xy,...,x,] and M be a graded R-module. A graded free resolution
Fo: o F 2 B2 E %% M0

is said to be minimal if ¢;(F;) C (x1,...,x,)F;_q for all i > 1.

Example 1.2.3. Let I = (2?,4?) and R = k[z,y]. Then
Fu:0+ R/T& RER(-2) & R(—2) <2 R(—4) « 0,

where ¢o(1) =1, ¢1(1,0) = 22, $1(0,1) = 3, ¢o(1) = (—y?*, 2*) is a minimal graded free resolution
of R/I over R.



Example 1.2.4. Let [ = (23, 4?) and R = k[z,y]. Then
Fo:0 R/T& RE R(—3) & R(—2) <2 R(—5) « 0,

where ¢g(1) =1, ¢1(1,0) = 23, $1(0,1) = 3, ¢2(1) = (—y?, 2*) is a minimal graded free resolution
of R/I over R.

Definition 1.2.5. Let R = k[z1,...,x,] and M be a graded R-module.

Fuoiooo s By O By 20 2 B 2% M 0

be a minimal graded free resolution of M, where F; = @ R(—j)%M) . Then the numbers 3; (M)

J
are called graded Betti numbers of M. [5;(M) = ZBZJ(M) is called the total ith Betti number
J
of M.
Definition 1.2.6. Let 3, ; be graded Betti numbers of M. Then Betti table of M is written as

L A P

0 Boo Bia - Bup
1 Box Biz 0 Bppti

Definition 1.2.7. Let k be a field and M = @ M, be a finitely generated graded module over
nez

the polynomial ring k[x1,...,xz,]. Then the function Hyr : Z — 7Z, given by Hy () = dimy (M) s
called as Hilbert function of M.

Let k be a field and R = k[xy,...,z,]. Let a € R\ {0} be such that deg(a) = d. Since a is a

nonzerodivisor on R, we get an exact sequence of R-modules
0— R(—d) % R— R/(a) — 0.
Since R is graded, for each i, we have an exact sequence of k-vector spaces
0 — R(—d); = R; — [R/(a)]; — 0.
Now, using rank-nullity theorem for vector spaces, we get
dimy,(R;) = dimy ((R(=d));) + dimy((12/{a))i),

ie.,
Hp(i) = Hr(-a) (1) + Hrya) (1)
Therefore, Hg(i) = Hg(i — d) + HR/<a>(i) or Hg/a (1) = Hgr(i) — Hg(i — d).

8



Definition 1.2.8. Given k, M as above, define the Hilbert series of M as Hy(t) = 3~ Hu(5)t.
The next corollary follows from the above definition.
Corollary 1.2.9. Hp,(t) = Hg(t)/(1 — t)*.

Example 1.2.10. Let R = k[z,y] and a = z2. In this case, for all i > 0, we have Hp(i) =i+ 1.
This is because the ith graded component of R, as a k-vector space is has a basis {z"y"™" | 0 <
r < i}. For the element z?, we have deg(z?) = 2. Hence, by the formula above, we must have
Hpjoy(i) = (i 4+ 1) — (i — 1) = 2; which is true as {zy""1,y} form a k-vector space basis of

(R/{x?)):.
Proposition 1.2.11. Let M, N be graded R-modules. Then TorZR(M, N) is graded for all i.

Proof. Consider a graded free resolution of M as follows:
o= = = Fy— M= 0.
Tensoring with N gives a complex of graded modules
e > QN —>FIQN > FhbN >M®N — 0.

Since Tor’(M, N) is quotient of a graded submodule of a graded module by a graded submodule,
we conclude that Tor’ (M, N) is graded for all i. O

Remark 1.2.12. If F, is a graded free resolution of M then we define *Ext’y (M, N) = H'(*Hompg(F,, N)).
Then, by Proposition 1.1.13, if R is Noetherian local ring and M is finitely generated R-module,
then *Ext% (M, N) = Ext, (M, N).



Chapter 2

Grobner Bases and Schreyer’s Algorithm

Let k be a field and S = k[zy, ..., z,].
If a = (ai,...,a,), * will denote the monomial z{*...z%. As is convention, an ideal of S

generated by monomials will be referred to as a monomial ideal.

Definition 2.0.1. Let F be a finitely generated free module over S with basis {e1,. .., e,}.

A monomial in F is an element of the form m = x%; for some i. We say that such an m
mwvolves the basis element e;.

A monomazal submodule of F is a submodule generated by elements of this form. Any monomial
submodule M of F' may be written as

M - @Ij@j Q @S@j = F,

with I; the monomial ideal generated by those monomials m such that me; € M.
A term in F is a monomial multiplied by a scalar.

Definition 2.0.2. Let F be a finitely generated free module over S with basis {e1,...,e,}.
If m, n are monomials of S, u,v € k, and v # 0, then we say that the term ume; is divisible by
the term vne; if i = j and m is divisible by n in S; the quotient is then um/vn € S.

Definition 2.0.3. The set of monomials in M that are minimal elements in the partial order by
divisibility on the monomials of F' are referred as minimal generators of M.

2.1 Hilbert Function of Monomial Submodules

Let F be a free S-module with basis {¢; : i = 1,...,n}, and let M C F be a monomial submodule.
Since, as seen before, M = @Il;e;, we have F//M = @&S/I; and, since the Hilbert function is
additive, it suffices to handle the case F' =5 and M = I, where [ is a monomial ideal.

Choosing one of the monomial generators f of I, and letting I’ be the monomial ideal generated
by the remaining generators, we have the following graded exact sequence:

0— S/(I': f)(=d) L S/I' — S/T — 0,

10



where d is the degree of f. If I' = (f1, fa. ..., fi), then

(Il 1 f) = (fi/GCD(f1, f), f2/ GCD(f2, f), -, fu/ GCD(fs, f))-

For every integer n,
Hgyr(n) = Hsyr(n) — Hsy(1r.5)(n).

Note that both I’ and (I’ : f) have fewer minimal generators than I, and hence, using induction,
we can compute an expression for the Hilbert function or polynomial of I.

By choosing f sensibly, we can make the process much faster: If f contains the largest power of
some variable x; of any of the minimal generators of I, then the minimal generators of the resulting
ideal (I" : f) will not involve z; at all. They will thus involve strictly fewer of the variables than
the number involved in the minimal generators of I.

2.2 Syzygies of Monomial Submodules

Let F' be a free module and let M be a submodule of F' generated by monomials my, ..., m;.
Define
qb : @;:156]' — F, Qb(Ej) =m;.

For each pair of indices ¢, j such that m; and m; involve the same basis element of I, we define
mi; = m;/GCD(m;, m;),
and we define 0;; to be the element of ker(¢) given by
Tij = Mji€ — My €E;.
Lemma 2.2.1. With notation as above, ker(¢) is generated by the set of all o;;, wherever defined.

Proof. As a vector space over k, ker(¢) = @ ker(¢),, where

ker(¢)f = {Z a; fi€; € ker(¢) : m; divides f, f; = f/m;, a; € k} )

Indeed, let
o = ZPZQ - ker(qﬁ)

For any monomial f that occurs in one of the p;m;, and for each 4, let p; s be the term of p; such
that p; ym; is a scalar times f. Then,

Zpimi:() = Zzpi,fmizo - Zzpi,fmizo - vazpi,fmi:()-
i i f foo i

11



Therefore, for all monomials f, > . p; re; € ker(¢).

We may now assume o = Y .a; f;; for some monomial f of F. If 0 = 0, o lies in the module
generated by o;;. If 0 # 0, at least two of the a;f; must be non-zero, since ), a;fim; = 0.
This implies that for some ¢, j, both m; and m; must divide f and in fact, m;f; = m;f; = f,
which implies that mj; = m;/GCD(m;, m;) divides f;. Let k = f;/mj;, then ko;; € ker(¢)y, and
o — a;ko;; has fewer non-zero terms than o. Hence, the proof is complete by induction on number
of non-zero terms of o. ]

Example 2.2.2. Let S =k[z,y], F'= 8%, M = ((2%,0),(0,2y),(0,4%)). Then we have
¢ @j_1S¢; = Fro(er) = (22,0), d(e2) = (0,2y), ¢(e3) = (0,9°).

Suppose for some a1, as, a3 € S, ¢(aj€e; + ases + azez) = 0, then we have (a12?, aswy + azy®) = 0,
and hence, a1 = 0, ay = by?, a3 = —bx. Thus, ae; + azes + azes = b(0,y? — x) = boas.

2.3 Monomial Orders

Let I be an ideal of S, J be a monomial ideal of S and B be the set of all monomials not in J.
Then, the elements of B are k-linearly independent modulo [ if and only if J contains at least one
monomial from every polynomial in [.

Indeed, suppose J contains no monomial of f € I, f # 0. Then f € Span(B)NI, which implies that
the elements of B are linearly dependent modulo /. Conversely, suppose there exist ay,...,a, € k
and mq,...,m, € B such that E?:l a;m; € I, then Z?:l a;m; is a polynomial in I for which no
monomials belong to J.

Moreover, if B is a basis of S/I, J must be a minimal monomial ideal containing at least one
monomial from every polynomial in /. Indeed, suppose J contains at least one monomial from
each polynomial in 7, but is not a minimal ideal satisfying this condition. Let J; C J satisfying
the condition, and let f € J\ J;, where f is a monomial. Suppose f € Span(B), that is, there
exist ay,...,a, € k and my,...,m, € B such that f —> "  a;m; € I. Since J; contains at least
one monomial of every polynomial in I, we have a contradiction. Hence, B cannot span S/I if .J
is not the minimal monomial ideal containing one monomial from each polynomial in I.

Definition 2.3.1. Let F' be a free S-module. A monomzial order on F is a total order T on the
monomials of F' such that the following two conditions are satisfied:

(i) if my is @ monomial of F' and f # 1 is a monomial of S, then fmy >, m;.

(ii) if my, mo are monomials of F' and f # 1 is a monomial of S, then my >, my implies
fmy >; fmo.

Lemma 2.3.2 (Well-Ordering Property). Let F' be a free S-module. The set of monomials in F
is well-ordered with respect to any monomial order, that is, every non-empty subset of monomials
in ' has a least element.

12



Proof. Let X C F be a set of monomials. Since S is Noetherian, the submodule of F' generated
by X must be generated by a finite subset of X, say, Y. Since Y is a finite set of monomials, it
must have a least element with respect to a monomial order. The least element of Y must be the
least element of X because every element of X is an element in Y multiplied by a monomial in
S. O

We will extend this notation to terms: If um; and vmsy are terms with 0 # u,v € k, and mq, ms
are monomials with m, >, mgy then we say um; >, vms.

Definition 2.3.3. Let F' be a free S-module and T be a monomial order on F. For any f € F,
we define the initial term of f, denoted by in.(f) to be the greatest term of f with respect to the
order 7. Given a submodule M of F, define the initial submodule of M, denoted by in. (M), to
be the monomial submodule generated by in,(f) for all f € M.

Theorem 2.3.4 (Macaulay). Let F' be a free S-module and M be a submodule of F. For any
monomial order T on F, the set B of all monomials not in in. (M) forms a k-basis for F/M.

Proof. Suppose the set B is not linearly independent. Then there exist distinct mq,...,m; € B
and (aq,...,a;) € k"\{0} such that f :=aymy+---+aym; € M. Since in(f) € in(M), there must
exist ¢ € {1,...,t} such that m; € in(M), which is a contradiction.

Suppose B does not span F/M. Let f € F\(M + Span(B)) such that f has minimal initial
term among all elements of F'\(M + Span(B)). We can choose such an f by the well-ordering
property. If in(f) € Span(B), f —in(f) € F\(M + Span(B)) has smaller initial term than f.
Hence, in(f) € in(M). However, this implies that there exists g € M such that in(f) = in(g), and
f—g € F\(M + Span(B)) has smaller initial term than f, leading to a contradiction. O

Corollary 2.3.5. Given F, M, as above, dim(F/M) = dimy(F/in.(M)).

Corollary 2.3.6. Given monomial orders 7,7y on S and an ideal I € S such that in,(I) C in, (1),
we have in.(I) = in, (I).

Proof. If in,(I) C in,(I), the set of monomials in S\in, (/) is a proper subset of the set of mono-
mials in S\in,(/). However, both these sets of monomials form a K-basis of S/I, which is a

contradiction. O
Here are some important examples of monomial orders when F' = S. Let a = (ay,...,a,),b =
(by,...,b.) and m = 2%, m’ = 2°

Lexicographic order: m >, m' if and only if a; > b; for the smallest ¢ such that a; # b;.
Graded lexicographic order: m >, m’ if and only if deg(m) > deg(n) or deg(m) = deg(n)
and a; > b; for the smallest ¢ such that a; # b;.

Reverse graded lexicographic order: m >gcye, m' if and only if deg(m) > deg(n) or
deg(m) = deg(n) and a; < b; for the largest i such that a; # b;.
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Remark 2.3.7. A “reverse lexicographic order” is not a monomial order, because 1 is not the
least monomial. In fact, 1 is the largest monomial.

Theorem 2.3.8. Every ideal I C S = k[x1,...,x,] has only finitely many distinct initial ideals.

Proof. Suppose I has an infinite set ¥, of distinct initial ideals. Choose f; € I, f; # 0. Since f;
has only finitely many terms and since each element of >y contains at least one term of f;, there
exists a monomial m; in f; such that the set X1 := {J € Xy : my € J} is infinite. Hence, (m;) is
strictly contained in an initial ideal of I, and by Theorem 2.3.4, the monomials outside (m;) are
k-linearly dependent modulo I. Thus, there exists a non-zero polynomial f; € I none of whose
terms lies in (m;). Since f> has finitely many terms, there exists a monomial msy in fy such that
the set 3y := {J € ¥y : my € J} is infinite. Hence, (my, my) is strictly contained in an initial ideal
of I, and by Theorem 2.3.4, the monomials outside (my, msy) are k-linearly dependent modulo 1.
Thus, there exists a non-zero polynomial f3 € I none of whose terms lies in (mq,ms). Now we
can choose a monomial m3 in f3 such that the set X3 := {J € X5 : my € J} is infinite. Iterating
this construction, we obtain an infinite strictly increasing chain of ideals in .S:

(my) C (my,mg) C (mq,my,m3) C ...
Since S is Noetherian, we have a contradiction. ]

Definition 2.3.9. A finite subsetU € I is called a universal Gréobner basis if U is a Grobner basis
if U is a Grobner basis of I with respect to all monomial orders.

Theorem 2.3.10. Fvery ideal S possesses a finite universal Grobner basis U.

Proof. By Theorem 2.3.8, there are only finitely many distinct initial ideals of . We can choose a
reduced Grobner basis for each initial ideal of /. Their union is finite, and is a universal Grébner
basis for I. [

Definition 2.3.11. A Groébner basis with respect to an order T on a free module F' is a set
of elements gy,...,q9: € F such that if M is the submodule of F generated by g1, ...,g:, then
in.(g1),...,in-(g;) generate in,(M). We then say that g1, ...,9; is a Grébner basis of M.

There is a Grobner basis of any submodule M of F, with respect to any monomial order: if
g1, ---, g is a set of generators of M which is not a Grobner basis, we can adjoin g;;1, ..., gy until
in(g1),...,in(gy) generate in(M) (note that the Hilbert basis theorem implies that this can be
done).

Lemma 2.3.12. Let N C M C F be submodules such that in(N) = in(M) with respect to a given
monomial order. Then, N = M.

Proof. Suppose N # M, then, by the well-ordering property, there exists f € M\N such that
f has the least initial term among all the elements of M not in N. Since f € M, we have
in(f) € in(M) = in(N), which implies the existence of g € N such that in(f) = in(g). Note that
f—g € M\N, but has smaller initial term than f, which is a contradiction to the choice of f. [

The above lemma tells us that if (in(g;),...,in(g;)) = in(M) for ¢1,...,g: € M, then (gy,...,q:) =
M. This follows since (incg1),...,in@g:)) C in({g1,...,9)) C in(M).

14



2.4 Computing Syzygies

Proposition 2.4.1 (Division Algorithm). Let F' be a free S-module with monomial order . If
f,91,...,9: € F, then there is an expression

t
f=Y_ figi+ ['with f' € F, f, €,
=1

where none of the monomials of f' is in (in(g1),...,in(g:)) and in(f) >, in(f;g;) for every i.

Definition 2.4.2. With notation as above, any such ' is called a remainder of [ with respect
to g1, ..., g, and an expression f = figi + f' satisfying the condition of the proposition is called
a standard expression for [ in terms of the g;.

The proof outlines an algorithm to attain a standard expression for any f € F.

Proof. 1f f,q1,...,9; € F, then we may produce a standard expression

f= muge, +f

for f with respect to gi,...,q; by defining the indices s, and the terms m, inductively. Having
chosen sq,...,s, and mq,...,m,, if

f}’) ::f_zmugsu 7é0
u=1

and m is the maximal term of f;; that is divisible by in(g;) for some i, then choose 5,11 =4, m11 =
m/in(g;). This process terminates when either f, = 0 or no in(g;) divides a monomial of f; the
remainder [’ is then the last f produced.

Note that the well-ordering property guarantees that this process must terminate, because the
maximal term of f; divisible by some g; decreases at each step. ]

Fix the following notation:
Let F be a free module over S with monomial order 7. Let gy, ..., g; be non-zero elements of F
and let @Se; be a free module with basis {ey,...,&}.
For two terms my, ms € F', m; < my denotes that the monomial corresponding to m; is less than
the monomial corresponding to my with respect to the order 7.
For each pair of indices i, j such that in(g;) and in(g;) involve the same basis element of F', we
define

my; = in(g;)/GCD(in(g,), in(g;)) € S.

and we set 045 = M€ — M€, for i < J.
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For each such pair i, j, choose a standard expression

t

Mjigi — Mijgj = Z F59 gy + hij

u=1

for mj;g; — mi;g; with respect to gy, ..., g. Note that in( (j)gu) < in(mj;g;).

Set h;; = 0 if in(g;) and in(g;) involve different basis elements of F.

Define ¢ : &Se; — F, ¢(e;) = ¢;. Then, the set of o;; generate the syzygies on the module
generated by the elements in(g;) (by Lemma 2.2.1). Note that ¢(o;;) = mj;: — mijg;-

Theorem 2.4.3 (Buchberger’s Criterion). The elements gi,...,g; form a Grébner basis if and
only if hij = 0 for all i and j.

Proof. Let M = (g1,...,q) C F. The expression for h;; implies that h;; € M, and hence
in(h;;) € in(M). However, if g1, ..., g is a Grobner basis, the definition of a standard expression
forces h;; = 0 for all 4, j.

Conversely, suppose that h;; = 0 for all 7,j. Let f = Zzzl h;g; € M, where, among all possible
hi,...,hy such that f = S°._ g, b1, ..., h; are chosen such that max{in(h;g;) : 1 < i < t} is
minimal. We prove that in(f) € (in(g1),...,in(g:)).

If in(f) = in(h;g;) for some 4, in(g;)|in(f) = in(f) € (in(g1),.-..,in(g)).

Hence, let in(f) < max{in(h;g;) : 1 < i < t} = m. Define an equivalence relation = on terms
as follows: m; = my if there exists A € k\{0} such that m; = Amy. Without loss of generality,
suppose in(h;g;) =m fori =1,...,t; and in(h;g;) <m fori =1t +1,...,¢

t

f = Z idi = Z hzgz + Z hzgz

i=1 i=t1
t1

t
:Zln gl—kz h —1n ))gi—l— Z hig;.

=1 i=t1+1

Note that YL, in(h;)in(g;) = 0.
Define ¢y : ®Se; — M, ¢1(¢;) = in(g;) and ¢o : ©Se; — M, ¢2(€;) = g;. Note that 2:1:1 in(h;)e; €
ker(¢y). Therefore, by Lemma 2.2.1,

t1

Z 1n(hz)el = Z ]{?ijO'Z'j, !

i=1 i<j

where k;; = a;;m/LCM(in(g;),n(g;)) for some a;; € k.
Note that ¢o(3 0L, in(hy)e) = St in(hi)gi

et k;; = 0 and o;; = 0 for i, j where 0;; is not originally defined

16



Hence,

~

1

t
Z in(hi)gi = D _ kij(miigi = misgs) = D ki 3 Fi¥ g

i=1 1<J 1<j u=1

since h;; = 0 for all 4, j. Note that since in(fyj)gu) < in(mj;g;), we have in(k:ijf@(fj)) <m.
Hence, we have an expression for f = ). hjg;, where max{in(hlg;) : 1 < i <t} < m, which is a
contradiction. 0

This result gives us an effective method for computing Grobner bases.

Buchberger’s Algorithm: In the situation of Theorem 2.4.3, suppose that M is a submodule
of F, and let ¢1,...,9: € M be a set of generators of M. Compute the remainders h;;. If all the
hij = 0, then {g1,...,0:} forms a Grébner basis of M. If some h;; # 0, then replace ¢1,...,
with g1,..., g hij, and repeat the process. As the submodule generated by the initial forms of
G150, hij is strictly larger than that generated by the initial forms of gy, ..., g, this process
must terminate after finitely many steps.

The next theorem shows that if {g1, ..., g:} is a Grobner basis of M, the equations h;; = 0 generate
the first syzygy of M.
For ¢ < j such that in(g;) and in(g;) involve the same basis element of F', we set

t
wij = mjiei — mijej — fé])eu'
u=1

Let W be the set of all such w;;.

Theorem 2.4.4 (Schreyer). With notation as above, suppose that {gi,...,g9:} is a Grobner basis
of M. Let v be the monomial order on @3‘:15’6]‘ defined by taking me, > ne, if and only if

in(mg,) >, in(ng,) with respect to the given order T on F

or
in(mg,) = in(ng,), but u < v.

W generates the first syzygy of M. Moreover, W forms a Grobner basis of the syzygies with respect
to the order v, and in,(w;;) = mj;€;.

Proof. We first prove that in,(w;;) = mj;¢;. Since
in(mjig:) = in(mi;g;),

and these terms are by hypothesis greater than any that appear in the >\ _, fz(fj ) Gu, in(w;;) must
be either Mj;€; OI —1M;;€;. Since 1 < 7, inv(wij) = Mj;€;.
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To show that W forms a Grobner basis, let w = 2521 fi€i. Let in(f;) = h; for all i. The theorem
is proved once we show that in,(w) € (in,(v) : v € W). Note that in,(w) = in,(fje;) = hje; for

some j. Let
o= Z fi€i.
i:hilll(g;)=h;10(g;)
o is a syzygy on {in(g;) : i > j}, because if h;in(g;) =, h;in(g;), we must have ¢ > j. Hence, by
Lemma 2.2.1, o is generated by o, for u,v > j, and ¢; only appears in o0, for j < v. This implies
that h; is a k-linear combination of {m,; : j < v} and thus, in,(w) is a k-linear combination of
{myj€; : j < v}, which proves the theorem. ]

Corollary 2.4.5. With notation as in Theorem 2.4.4, suppose that the g; are arranged such that
whenever in(g;) and in(g;) involve the same basis vector e of F, say in(g;) = mye,in(g;) = mje
with m;, m; € S,

1 < j == m; >m;jinlexicographic order.

If the wvariables x1,...,xs are missing from in(g;) for all i, then the variables xi,...,Tsy1 are
missing from in, (w;;) for all i < j for which w;; is defined. Further, F/{g1,...,q:) has a free
resolution of length < r — s.

Proof. If the variables x1,..., x5 are missing from in(g;) for all i, then, due to the stipulated
arrangement of {g1,...,¢:}, for ¢ < j such that in(g;) and in(g;) involve the same basis element,
the variable z,,; must appear in g; with at least as high a power as in g;. As a result, the variable
Zs41 does not appear in mj;, and hence, does not appear in in, (w;;) = mje;.

We now show that F/(gi,...,g;) has a free resolution of length < r — s by induction on r — s.
Suppose first that » — s = 0, so that none of the variables x1, ..., z, appears in the terms in(g;).
Since none of the variables appear in in(g;) for all 7, in(g;) must be a scalar times a basis element
of F'. Let F’ be the free submodule spanned by all the e; which do not appear in in(g;) for any i.
By Theorem 2.3.4, F” is isomorphic to F/(g1,. .., 9t)-

Suppose r — s > 0. By the first statement of the theorem, the variables x1, ..., x,,1 are missing
from in,(w;;) for all ¢, j. Order the w;; to satisfy the same hypothesis as on the g;. Then, by the
induction hypothesis, F'/(IW) has a free resolution of length < r — s — 1. Combining this with the
natural map ¢ : ®Se; — F, we get a free resolution of F'/(gy,...,g;) of length <r —s. O

Example 2.4.6. Let F = S and I = (23 —yz,y*—xz,2%y—22%). Let g1 = 23 —yz, g0 = y*—w2,93 =
2%y — 22. In this example, we consider the lexicographic order on S. Thus, we have

in(gl) = x37in(92) = —XZz, ln(gg) = xzy.

Let Sij = mﬂg, = mijgj. Then,

3

—XIZ xXr
S — 3 2
12 . (z yz) - (y r2)
— 22 — 2y’
= —Ygs,
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and hence, hiy = 0. Similarly, Sos = 2y — 2% = hos. Thus, we add g4 = hos to the original basis
{91, 92,93} For the basis {g1, 92, 93,94}, we immediately have his = hsg = 0. Calculation also
reveals that Si3 = —2go and Sy = —z(y? + x2)ge, which implies that hi3 = hyy = 0. However,
Soy = y® — 2% = hyy. For the new basis {g1, g2, 93, 94, g5}, where g5 = 3°> — 2%, we instantly have
h12 = h23 = h13 = h14 = h24 =0. Further,

Szq = —22gy, S15 = —2(94 +zy’z + 33222)92, Sos = 2*go + g5, S35 = —32(3/2 +x2)g2, S45 = —2°gs.

This shows that {g1, 92, g3, 94, g5} is a Grobner basis of I.
Rearranging the basis to satisfy the hypothesis of the corollary, we have I = (23 — yz, 2%y —
22wyl — 23 vz — 2, y° — 2%). Hence,

W12 = Y€1 — T€g — Z€y

w13 = y3€1 — 113'262 — Z€4

wiy = 26, — ey — 2(y* +22)ey

wis = y’e — s — 2(yt + 2y’ + 272 )ey
Wo3 = y262 — T€3z — 2264

W24 = Z€3 — TYE4 — €3

Woy = y462 — 1’265 — 22('y2 -+ ZL’Z>€4

W34 = Z€3 — y3€4 + €5

W35 = y2€3 — L€y — 2364

wys = (y° — 2 ex + (Y — 22)es

Note that z is missing from the initial terms of all the w;j, as it should be, according to the
previous corollary.

As a corollary, we get the following famous theorem by Hilbert.

Theorem 2.4.7 (Hilbert’s Syzygy Theorem). Let M be a finitely generated S-module, where
S =k[zy,...,x.]. Then, pdim(M) <.
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Chapter 3

Ideals and related objects

3.1 Homological invariants of initial ideals

3.1.1 Gradings defined by weights
Definition 3.1.1. Let w = (w1, ..., w,) € N". We call this vector a weight and set deg,, x; = w;
fori=1,...,n. Then, for (ai,...,a,) € N,

T

ai ar __ .
deg,, 7' ...z = E a;w;.

i=1
A polynomial f € S is called homogeneous of degree j with respect to the weight w if the degree
of all homogeneous components of f is j.

Fix a weight w and let S; be the k-vector space spanned by all homogeneous polynomials of degree
J. Then, S; is finite dimensional and the monomials v with deg,, u = j form a k-basis. It follows
that

S =®;95;.

Thus, note that we have defined a new grading on S.

Definition 3.1.2. FEach polynomial f € S can be uniquely written as f = Zj f; with f; € S;.
The summands f; are called the homogeneous components of f with respect to w.

The degree of f with respect to w is defined to be deg,, f = max{j : f; # 0}, and if i = deg,, f,
then f; is called the initial term of f with respect to w and is denoted by iny(f).

Note that iny(f) need not be a monomial.

Definition 3.1.3. Let I C S be an ideal. We define the initial ideal of I with respect to w as
iny (1) = (inw(f) : f € I).

A set of polynomials f1,..., fn € I such that ing(I) = (ing(f1),...,ing(fn)) is called a standard

basis of I with respect to w.

20



The following lemma shows that a standard basis of I with respect to a weight generates I.
Lemma 3.1.4. Let J C I be ideals in S. If iny(J) = iny (1), then I = J.

Proof. Suppose I # J. Let f € I\J such that deg,, f is minimum among all elements in I\J.
Since iny(f) € ing (/) = iny(J) and iny(J) is a homogeneous ideal with respect to the grading
given by w, there must exist g € J such that iny(f) = inw(g). Note that f —g € I\J, and
deg,, (f — g) < degy(f), which is a contradiction. O

The following lemma is proved in [12].

Lemma 3.1.5. Given a monomial order T and pairs of monomials (g1, h1), ..., (Gm, hm) such that
gi > h; for all i, there exists a weight w such that deg,, g; > deg,, h; for all 1.

Theorem 3.1.6. Given an ideal I and a monomial order T, there exists a weight w such that
in,(I) = iny (I).

Proof. Let {g1,...,g,} be a Grobner basis of I with respect to the monomial order 7. For all i,
define K; to be the set of all monomials appearing in ¢;, and denote the monomial corresponding
to in,(g;) as m;. Define K = U;(g;, K;\{m;}) € S?. By the previous lemma, there exists a weight
w such that g > h for all (¢,h) € K. Observe that iny(g;) = in,(g;) for all 1. Hence,

inT(I) = <in’r(gl)a e >in7'(gn)> - an(I)

Define a monomial order 7y, as m; <,, mo if (i) deg,(m1) < degy(ms) or (ii) deg, (mi) =
deg,, (ms) and m; <, msy. Thus, we have

in, (/) = in,(in, (1)) C in,(iny (1)) = ing, (1).

Corollary 2.3.6 implies that in,(I) = in,, (/). We show that in,, (/) D iny (/) to complete the
proof.

Observe that in., (g;) = in.(g;) = inw(g;) for all i and hence, {gi, ..., g,} is a Grobner basis of [
with respect to 7, as well.

Let f € I and f = figi+ -+ fngn be a standard expression for f in terms of {gi,...,¢g,}. Since
ing, (f) >n inn, (figi) for all ¢, we have deg, f > deg,, (figi). Let L ={i € {1,...,n} : deg, f =
deg,, (figi)}- Then,

inw(f) = inw(figi) = Y inw(fi)inw(g:) = D inw(fi)ing, (g:) € ing, (7).

i€l €L €L
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3.1.2 Homogenization

Definition 3.1.7. Fiz a weight w. Let f be a non-zero polynomial in S with homogeneous com-
ponents f; (with respect to the weight w). We introduce a new variable t and define the homog-
enization of f with respect to w as the polynomial

flr="2 fitiee I e sil.

Note that f" is homogeneous in S[t] with respect to the extended weight (wy, ..., w,,1) € N'*L
Definition 3.1.8. Let I C S be an ideal. The homogenization of I is defined to be the ideal

I"={(f":fel) cS[.

For any homogeneous polynomial g € S[t], let § denote the polynomial in S obtained by substi-
tuting t = 1.

Lemma 3.1.9. Let f € S[t] be homogeneous with respect to the weight (w1, . .., w,,1). Then f € I"
iff f=1t"g" for some g € I and some n € Zsq. Further, in this case, g = fh.

Proof. 1t is clear that f € I" if f = t"g" for some g € I and some n € Z,.

Suppose f € I" is homogeneous. Then, there exist fi,...,f; € [ and gy,...,gs € S[t] such that
f = Zf:l ngzh

We have

Tzsz_f:szi el
=1 =1

We claim that f = t”?h for some non-negative integer n. To observe this, let f = g;(z1,...,z, )t +
oo+ gi(z1, ..., 2,.)tF such that I < k and g;, gx # 0. Then, f = g/(21,...,2,) +---+gu(x1,...,1,)
and .

f=axy,...,0.) +gei(@, .. o)t + -+ gy, ..,z )t

which implies that f = tlfh and completes the proof. [

Remark 3.1.10. Observe that in the above proof, we have also shown that if f is homogeneous
in 1", then f € 1.

Definition 3.1.11. A monomial order T on S is said to respect w if for all mi,mqs € S such that
deg,, mi < deg,, ma, we have m; <, my.

Example 3.1.12. The graded lexicographic order and reverse graded lexicographic order respect
the standard grading on S. More generally, the order <, respects w.

For a monomial order 7 which respects w, define a natural extension 7’ to S[t] as follows: z%¢ <.
2%t iff (i) 2¢ <, 2° or (ii) 2% = 2° and ¢ < d, where, as usual, 2% denotes z{* ... x%".

This monomial order has the property that in,(g) = in,/(¢") for all non-zero g € S.
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Proposition 3.1.13. Let I C S be an ideal, and let {g1,...,g,} be a Grébner basis of I with
respect to a monomial order T which respects w. Then, {g", ... g"} is a Grébner basis of I" with
respect to 7'.

Proof. Note that since I" is a homogeneous ideal with respect to the extended weight (wy, . .., w,, 1),
it is sufficient to prove that if f € I" is homogeneous with respect to (wy,...,w,,1), then
in./(f) € (ing(gt),...,in(g")).

Let f € I", be homogeneous. Then, by the previous lemma, there exist g € I and m € Z, such
that f = t™¢". Hence,

ing(f) = t"in. (gh> = t"in,(g).

There exist u € S and i € {1,...,n} such that in.(g) = uin,(g;) = uing(g?). Thus, in,f =
ut™in,. (gh). O

Proposition 3.1.14. Given an ideal I C S, S[t]/I" is a free k[t]-module.

Proof. Let {g1,...,gn} be a Grébner basis of I with respect to a monomial order 7 graded with
respect to w. Then, {g, ..., g"} is a Grobner basis of I" with respect to 7. It follows from
Theorem 2.3.4 that the set of all monomials in S[t] not in (in.(g), ..., in.(g")) forms a k-basis of
S[t]/1". Since in.(gl) = in,(g;), we have (in.(g7),...,in(¢")) = (in.(g1),...,in,(g,))S[t] and
hence, the set of all monomials in S not in (in,(g1),...,in,(g,)) forms a k[t]-basis of S[t]/I". O

Lemma 3.1.15. Let R be a ring and consider ¢ : R[t] — R, a ring homomorphism with ¢|r = Id,
or equivalently, an R-linear ring homomorphism. Given an ideal I € RIt], ¢ naturally induces
an R-linear ring homomorphism ¢ : R[t]/I — R/$(I) given by ¢(f) = o(f), and ker(¢) =
(t — o) R[t]/1.

Proof. Clearly, ¢(f) is well-defined and (¢t — ¢(t))R[t]/I C ker(¢).

Let f € R[t] such that f € ker(¢). There exist a € R and g € R[t] such that f = a + (t — ¢(t))g,
which implies that ¢(f) = @ Thus, we have a € ¢(I). Let h € I such that ¢(h) = a, that is,
h=a+ (t —¢(t))h'. Then,

f=he(t—¢@)R[] = fel+(t—o()R[],
which completes the proof. ]

Proposition 3.1.16. Given an ideal I C S and a weight w on S, we have the following S-linear
ring 1somorphisms:
S[t]/ 1"
tS[t)/Ih

S[t/ 1
(t = a)S[t]/ 1

>~ S/ing(I) and = S/I Ya € S\ {0}.

Proof. For all a € k, define an S-linear map ¢, : S[t] — S as ¢,(1) = 1 and ¢,(t) = a. We claim
that ¢o(I") = iny (I).
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Given f € I, ¢o(f") = ing(f). Since I" = (f": f € I), it follows that ¢o(I") = iny(I). From the

previous lemma, we have t‘z,[g]//[h = Sing(1).

For a # 0, define a ring homomorphism v, : S — S as ¢, (z;) = a¥x; for all ¢ and .| = Id.
We claim that 1,¢,(I") = I. Then, according to the previous lemma, % >~ S/o.(I") as
S-modules and since a # 0, 9, is a ring isomorphism and S/¢,(I") = S/I as rings.

By Proposition 3.1.13, there exists a Grobner basis {g,...,g,} of I such that {gF,...,¢"} is a
Grobner basis of I". Let g; = > ; gij where g;; denotes the homogeneous component of g; of degree

j (with respect to w). Then,
— Z adegw 91—19137
J

and
wa((ﬁa(gb) = %% % 9;.

Since a # 0, we are done. ]

We now compare the Betti numbers of an ideal with those of its initial ideal.
Let I C S be a graded ideal with respect to the standard grading on S, and fix a weight w on

S. Let {g1,...,9n} be a Grobner basis of I with respect to a monomial order which respects w,
and further, such that g; is homogeneous with respect to the standard grading for all 7. Then,
{gh,..., gn} is a system of generators (in fact, a Grébner basis) of I

If we assign to each x; the bidegree (w;, 1) and to ¢ the bidegree (1,0), then all the generators g
are bihomogeneous, and hence I" is a bigraded ideal. Therefore S[t|/I" has a bigraded minimal
free S|[t]-resolution,

Fo:0=F, = F,_— - — Fy— S[t]/I" -0,

where F; = @, x(S[t](—k, —j))Pis*. Note that the minimality of the resolution is equivalent to the
condition that all entries in the matrices describing the maps must belong to (x1,...,z,,t).

Note that as S[t]/I" is a free k[t]-module, t — a is a non-zero divisor on S[t]/I" for all a € k. Since
t is a non-zero divisor on S[t]/I" and on S[t], and t € (z1,...,,,t), F,/tF, is a bigraded minimal

free S-resolution of ti'[ft]//lfh = S/iny(I). Observe that the bigraded shifts of F,/tF, are the same as
those in F, and in particular, the second component of the shifts in the resolution are the ordinary

shifts of the standard graded ideal iny, (1 ) Thus, we have
6@] (S/lnw Z ﬁz]k fOT’ all 1 j

On the other hand, since t — 1 is also a non-zero divisor on S[t]/I" and on S[t], F,/(t — 1)F, is a
free S-resolution of % >~ S/I. Note that ¢t — 1 is homogeneous with respect to the second
component of the bidegree and hence the second components of the shifts in the resolution F, are
preserved. However, ¢ — 1 does not belong to (xy,...,z,,t) and hence F,/(t — 1)F, need not be a

minimal resolution. Therefore, we have

6@](5/[) S Zﬁzjk fO?” all Z,j
k

24



We have thus proved the following theorem.
Theorem 3.1.17. Let I C S be a graded ideal and w be a weight. Then

BU(]> S 5ZJ(IIIW(I)> fO’/’ all Z,j
Theorem 3.1.17 and Thereom 3.1.6 yield the following corollary.
Corollary 3.1.18. Let I C S be a graded ideal and T be a monomial order on S. Then

Bij(I) < Bij(in (1)) foralli,j.
Once the Castelnuovo-Mumford regularity is introduced later, the following result follows imme-
diately from Corollary 3.1.18.

Corollary 3.1.19. Let I C S be a graded ideal and T be a monomial order on S. Then reg(I) <
reg(in(7)).

Corollary 3.1.20. Given I, 7 as above,

(i) pdim(S/1) < pdim(S/in(1));

(it) depth(S/I) > depth(S/in,(I)).

Proof. Corollary 3.1.18 directly implies (a). (b) follows from (a) and the Auslander-Buchsbaum
formula. O

Proposition 3.1.21. Let I C S be a graded ideal. Then,
(i) If ing (1) is a prime ideal, so is I.
(11) If ing (1) is a radical ideal, so is I.

Proof. Let I" € S[t] be the homogenization of I with respect to the weight w. We claim that I is
prime (resp. radical) if I" is prime (resp. radical).

O(f") = tiew I f.

Suppose I" is prime. Consider f,g € S\{0} such that fg € I. Then, (fg)" = f"¢" € I", which
implies that f* € I" or g" € I". Without loss of generality, let f* € I". Then, by Remark 3.1.10,
note that f = (f*) € I.

Similarly, suppose I" is radical. Consider f € S\{0} such that f* € I for n € N. Then,
(fM)h = (f")™ € I" and hence, f* € I". Proceeding as above, we have f € I.

The following lemma along with Proposition 3.1.16 proves that if iny (/) is prime (resp. radical),
so is I". [

Lemma 3.1.22. Let R be a finitely generated positively graded k-algebra and let s € R be a
homogeneous non-zero divisor of R such that R/sR is a domain (resp. a reduced ring) and deg(s) >
0. Then R is also a domain (resp. a reduced ring).

Proof. Suppose R/sR is a domain and there exist a,b € R\{0} such that ab = 0. By the Krull
Intersection Theorem, Ng>o(s)* = 0 and hence, there exist n,,ny € Zso such that a € (s)",b €
(s)y™ and a & (s)™ T b & (s)™ ! Let a = a's™, b = b's™ where a,b' ¢ (s). Then, o't/ = 0 and
hence a’b’ = 0, which implies that a’ € (s) or b’ € (s), a contradiction.

Similarly, suppose R/sR is a reduced ring and there exists a € R\{0} such that a” = 0. Let n, and
a’ be as above. Then, a™ = 0 and hence a’" = 0, which implies that a’ € (s), a contradiction. [J
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3.2 Polarization

As usual, let S = k[zy,...,z,].

Lemma 3.2.1. Let I C S be a monomial ideal with minimal generating set of monomials

{my,...,m,}, where m; = H?:l x;” fori =1,....,n. Fiz an integer j € [n] and suppose that
a;; > 1 for at least one i € [r]. Let T = Sly] and let J C T be the monomial ideal with minimal
generating set of monomials {m},...,m.}, where

, m; aij = 0
(mifxj)y  a;; > 1.

Then y — x; is a non-zero divisor in T/J and

T/J

wmrrs =

as S-modules.

Proof. Suppose y— x; is a zero divisor in 7'/J. Then y —z; € P for some P € Ass(J). By applying
Proposition 1.1.5 on the N"-grading, P is a monomial ideal, and hence y, z; € P. Thus, there exists
a monomial f € T\J such that yf,x;f € J. Then there exist mj, m; and monomials fi, fo € T'
such that yf = m; fi and z,; f = mj fs.

Since f & J, z; divides m; and hence, by the construction of J, y divides m;. This implies that y
divides f. Note that y does not divide f; because f ¢ J. This forces y* to divide m},, which is a
contradiction to the construction of J.

Define a ring homomorphism ¢ : 7' — S such that ¢|s = Id and ¢(y) = x;. Then, ¢(J) = I and
by Lemma 3.1.15, we have the required isomorphism. ]

Motivated by Lemma 3.2.1, we define the polarization of a monomial ideal I.

Let I C S be a monomial ideal with minimal generating set of monomials {my, ..., m,}, where
m; = H?le?” fori=1,...,n. Forall j=1,...,r, define a; = max{a;; : i = 1,...,n}.
Let T = Kk[z11,Z12 - -, T1ay, T21y - -+ s T2agy -+ » Tnily « -+ y Tnay |- Define J to be a monomial ideal in T
with generating set {m/, ..., m}} where
n  Gij
/
mi =[] 1]
j=1k=1

for all i € [n].

Definition 3.2.2. The monomial ideal J is called the polarization of I.

Example 3.2.3. Consider the ideal (z 23, 23) C k|x1,z]. The polarisation of I is

J = <$11,$219€227$21$22$23$24> C k[$117$21,$227$2379524]-
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Proposition 3.2.4. Let I C S be a monomial ideal and J C T be its polarization. Then the
sequence z given by

Tnl — Tnapy -1 Tnl — Tp2y -+, L21 — L2a9,-++,L21 — X22,...,T11 — Llagy---,L11 — T12

is a regular sequence on T'/J and
T/J
()T/J

~S/I
as graded k-algebras.

Proof. Firstly, replace z; in S by x;; for all i € [r]|. Let the minimal generating set of monomials
of I be {mgn), . ,mgl)} Now, let T2 = S[z12] and define m§”’ = m§“> if 211 does not appear
in m§”’ and m§12) = (mgn)/xn)xlg otherwise. Let Jio = <m§12),...,m§32)>. By Lemma 3.2.1,
r11 — *12 18 a non-zero divisor on T/ J12 and

T/ J
12/ J12 ~ 9/,
(1311 - 1312)T12/J12
Similarly, let Ty = T'2[z13) and define Jy3 = (mgl?’), . ,m%w)) mgl?’) = m§“) if 211 does not appear

in mﬁl” and m§13) = (mz(»u)/xn)a:lg otherwise. Note that
T3/ J Tyo/J
13/ 13 ~ 12/ 12 ~ 51,

(xn — 13,11 — $12)T13/J13 B ($11 - $12)T12/J12

Continue the process until T,,. Then, let Ty, = T1,, [x22]. We eventually get T,,,, = T. Repeated
application of Lemma 3.2.1 completes the proof. ]

Corollary 3.2.5. Let I C S be a monomial ideal and J C T be its polarization. Then
(Z) ﬁl]([> = /B’L](J> fOT’ all (N

(i) Hsy(t) = (1 — t)°Hyy () where 6 = dim T — dim S;

(111) pdim(S/I) = pdim(S/J) and reg(S/I) = reg(T/J).

Proof. (i) Follows from the fact that z is a regular sequence on 7'/ .J.
(ii) Follows from Corollary 1.2.9.
(iii) Follows from (i). O

3.3 The lexsegment ideal

Given a graded ideal I C S, our aim is to show the existence of a special ideal, the lexsegment
ideal of I, denoted by I lex7 such that S/I and S/ leX have the same Hilbert function.

By Corollary 2.3.5, S/I and S/in,(I) have the same Hilbert function for any monomial order 7
on S. Thus, we can assume that I is a monomial ideal. By Theorem 2.3.4, the monomials in S
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not belonging to I form a k-basis of I and since this k-basis determines the Hilbert functions of
S/I, the Hilbert function of S/I does not depend on the base field k. We can therefore assume
that char(k) = 0.

We denote by My(S) the set of all monomials of S of degree d.

Definition 3.3.1. A set L C My(S) is called a lexsegment if for allm € L, we have that m' € L
for all m’ € My(S) such that m’ >4 m.

Definition 3.3.2. A set £ C My(S) is called strongly stable if x;(m/z;) € L for allm € L and
all pairs (i,j) such that i < j and x; divides m.

For a monomial m € S, we set v(m) = max{i : z; divides m}.

Definition 3.3.3. A set L C My(95) is called stable if x;(m/x,(m)) € L for all m € L and all
i <y(m).

Definition 3.3.4. A monomial ideal I is said to be a lexsegment ideal or a (strongly) stable
monomial ideal, if for each d the monomials of degree d in I form a lexsegment, or a (strongly)
stable set of monomials respectively.

Remark 3.3.5. Note that every lexsegment set is strongly stable, and every strongly stable set
is stable.

Example 3.3.6. Let S = k[z,y, z, w].

Suppose I is the smallest lexsegment ideal containing vyz. Then I, = {(xyz, zy*, v’w, %2, %y, x°).
Suppose Iy is the smallest strongly stable ideal containing vyz. Then I, = (zyz, zy*, 2%z, 2%y, x3).
Suppose I3 is the smallest stable ideal containing vyz. Then Iy = (zyz, xy?, vy, 2°).

2

Now we have that S/I and S/gin_(I) have the same Hilbert function, and that gin,(I) is a strongly
stable ideal [12]. Hence, we can assume that I is a strongly stable ideal.

Theorem 3.3.7. Let I C S be a graded ideal. There exists a unique lexsegment ideal, denoted
1% such that S/I and S/I'** have the same Hilbert function.

Given a graded ideal I, with j™ graded component I;, denote by [}ex the k-vector space spanned
by the unique lexsegment £; with |£;| = dimy I;. Define ex — @jl}ex.
Note that if I'®X as defined above is an ideal, it is the only possible lexsegment ideal such that

S/I and S/I'** have the same Hilbert function. Therefore, we only need to show that I'*X is an
ideal to prove Theorem 3.3.7. It is sufficient to show that {z1,..., 2, }£; C L;41.

Definition 3.3.8. Let N be a set of monomials in S. Then the shadow of N is said to be the set
Shad(NV) = {zy,..., 2, )N ={zu:ue N,i=1,...,n}.

Lemma 3.3.9. If N C My(S) is stable, strongly stable or lexsegment, then so is Shad(N).
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Given N' C My(S), we denote by +;(NN) the number of elements y(m) = i and set 7<;(N) =
2 1N,

Lemma 3.3.10. Let N C My(S) be a stable set of monomials. Then Shad(N) is a stable set and
(i) 7:(Shad(N)) = v<i(N);

(ii) [Shad(N)| = 325y v<i(V),

Proof. (ii) follows directly from (i). To prove (i), define the map
¢:{m e N :vy(m) <i} — {m e Shad(N) : v(m) =i}, m — ma;.

¢ is clearly injective. Let m’ € Shad(N) such that v(m’) = 4. There exists j € [r] and m € N
such that m' = x;m. We must have y(m) <. If j =4, then we are done. If j < i, then y(m) =i
and since N is stable, m; = z;(m/x;) € N. Hence, we have m’ = x;m; for m; € N. This proves
that ¢ is a bijection, which implies (i). ]

Theorem 3.3.11 (Bayer). Let L C My(S) be a lexsegment and N C My(S) be a strongly stable
set of monomials with |L| < |N|. Then v<;(L) < v<;(N) fori=1,...,r.

Proof. Observe that we can write N' = Ny UNjz, U~ - UNzz? where each A is a strongly stable
set of monomials of degree d — j in the variables xy,..., 2, 1. The lexsegment £ has a similar
decomposition Ly U - -- U L,x,, where each £; is a lexsegment.

We prove the theorem by induction on the number of variables. If r = 1, we have that y<,(£) =
L] < V| = y<1(N).

Let r > 1. We have that v<,(£) = |£| and v<,.(N) = [N and hence, y<,.(£) <~
for i < r, v<i(L) = v<i(Lo) and v<;(N) = v<;(Ny). Hence, if we show that |Lo|
is done by induction.

For each j, let N be the lexsegment in My_;(k[zy,...,z,1]) with [N = |Nj| and let N* =
NG UNFz, U~ UNGzd, We claim that N* is a strongly stable set of monomials.

Observe that it suffices to show that {z1,..., 2, 1}N; C N} ;. By using that A is a strongly
stable set, we have that {zi,...,2,}N; C Nj_1. Then, by Lemma 3.3.10 and the induction
hypothesis, we have that

<-(N). Note that
< |Nol, the proof

r—1 r—1

{an, oz N =D <N < v<i(NG) = o,z NG| < NGl = IV

i=1 i=1

The fact that [{z1,..., 2, 1}N}| and [N} | are both lexsegments forces [{x1,...,z,_1}JN;| C
|NVj1], which implies that N* is a strongly stable set of monomials.
Now, given a monomial m = [[}_, 2", we set T = (z,,_1/x,)*m. Observe that if m; < ms in the
lexicographic order, then my < ms.
Let m; = min £ and my = min N*. Since N* is strongly stable, mz € N and m3z > min(N).
Further, min(Ng) > mg, which implies that min(A;) = min(N) > my. Hence, min(Ny) = my
and similarly, min(Lj) = my.
Since |£| < |N| = |N*|, we have that m; > my and hence, Ty > Mz. As Ly and Nj are
lexsegments, we get that |Lo| < |[N| = |No|, which completes the proof. O
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We now complete the proof of Theorem 3.3.7.

Recall that we may assume that I is strongly stable. Let N; be the strongly stable set of monomials
which spans the k-vector space I;. Since |L;| = |N;|, Bayer’s theorem together with Lemma 3.3.10
implies that

[Shad (L) = v<i(£;) <Y 7<i(N;) = |Shad(A;)].
i=1 i=1
Since [ is an ideal, we have that Shad(N;) C Nji1. Hence,
[Shad(£;)| < [Shad(Nj)[ < [N = [£44]-

Since Shad(L;) and £, are both lexsegments, |Shad(L;)| < |£;41] implies that Shad(L;) C L1,
as desired.
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Chapter 4

The Auslander-Buchsbaum-Serre
Theorem

In this chapter, we prove a result analogous to Hilbert’s Syzygy Theorem (Theorem 2.4.7).

Theorem 4.1.1. Let (R, m,k) be a Noetherian local ring and p(m) = n. Then pdimg(k) > n and
BE(k) > (%) foralli € {0,...,n}. Inparticular, if R is a reqular local ring, then depth(R) > p(m).

Proof. Let {x1,...,1,} be a minimal generating set of m. Therefore, z; € m \ m? for all i. We

construct a minimal free resolution of k step by step.
Let F} := A'R™ denote &!" | Re;. Define ¢ : A'R"™ — R as ¢1(e;) = ;. Let

vy 1= xie; —xje; € F, forall 1 <7< j<n.

Note that each v;; € ker(¢). We claim that the set {v;;|1 < i < j < n} can be extended to a
minimal generating set of K; := ker(¢;). Indeed, suppose there exists {a;; € R |1 <i < j <n}
such that >  a;v;; € mK;. Since F; maps minimally onto m, K; € mF), and hence mK; C

1<i<j<n
m2F,. Suppose, for some 1 < i’ < j' < n we have ayy ¢ m. Observe that the coefficient of e; in
i =1 n j'—1 n
Z Q;5V;5 is Z Q5T — Z ;15T and hence Z Q1 Ty — Z Q1T € m2. Since Q5 §é m, it

1<i<j<n i=1 i=j'+1 i=1 i=j'+1
is a unit. Hence,

Jj'=1 n

{Ila sy Tt 1, Z Q51 Ty — Z Qi iy Tif 41y -« - ,l’n}
i=1 i=j/+1

is also a minimal generating set of m with one of the elements in m?, which is a contradiction.
Therefore, a;; € m for all 1 <7 < j < n, which proves the claim.
Let F, = R%'® be a free module mapping minimally onto ker(¢;). From what we have seen
above, rank(F) = 83%(k) > (3). Thus, we write F5 = A2R" @ G,
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Inductively assume that {v;, ;. | 1 < ¢ < j < n} form a part of minimal generating set of
ker(¢,_1), where

T

Viy iy = Z(—l)k_lxikeh N Nej Nej N Nep € Frmy = ANIR"® G,_.
k=1

Let F, denote a free module mapping minimally onto ker(¢,_;). Then we have rank(F,) = s%(k) >
(’:) We can decompose F, as A"R" @ G,, where G, is an R-free module of rank S%(k) — (’:) Let
¢, . F, — F,._1 be such that

Grleiy N Nei,) = viy i,
Forall 1 <4y <+ <ipy1 <, let

r+1

2 k—1
U’il~~-ir+1 = (-1) xikeil A A €ik71 A 6ik+1 VARSIV eirﬂ.
k=1

Note that for all 1 < iy < -+ <441 < n, v, 4., € ker(¢,). Let K, denote ker(¢,). We claim
that
{Ui1...ir+1 ‘ 1 S i]_ <K< 7;7-_;’_]_ S n}

forms a part of minimal generating set of K,. To prove the claim, suppose that
{ail-..ir-H € Rll S Z'1 <0 < ir+1 S 77,}

be such that > a;, ., 0. 4., € mK,. Since F, maps minimally onto ker(¢,_1), we must have
K, C mF, and hence, mK, C m?F,. Suppose, for some 1 < i} < .- < i < n, @i i, ¢ m.

Observe that the coefficient of e; A... Aey  in D Qi1 Vi iy 18
i—1 ih—1 n
'
E Qiyityity..if  Lix — E Qityiriy..il Tip 0+ (—1) E Qityity...i! ,in Tin s
i1=1 i1=ih+1 1=y +1
which must belong to m2. Since iy il ¢ m, this contradicts the assumption that {z1,...,z,}
is a minimal generating set of m. Therefore, the set {v;, ;. ., | 1 <44 < -+ <41 < n} can be

extended to a minimal generating set of K. Hence, rank(F, ;) > (TL).
If R is regular local, by the Auslander-Buchsbaum formula, depth(R) = pdimp(k) and hence
depth(R) > p(m). O

Recall the following result.

Lemma 4.1.2. Let (R, m, k) be a Noetherian local ring. Let {by,...,b,} be a minimal generating
set of m, and K¢(by,...,b,) be the corresponding Koszul complex. Then depth(R) = min{j |
Hyj(Ka(by,... b)) # 0}

Corollary 4.1.3. Let (R, m, k) be a regular local ring. Then depth(R) = p(m).
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Proof. Note that the above lemma implies that depth(R) < u(m). Hence, we have depth(R) =
p(m). O

Corollary 4.1.4. Let (R, m,k) be a regular local ring. Then every minimal generating set of m is
a reqular sequence.

Proof. From the above lemma, since depth(R) = p(m), we have that the Koszul complex corre-
sponding to a minimal generating set of m must be exact. ]

Theorem 4.1.5 (Auslander-Buchsbaum-Serre). Let (R,m,k) be a Noetherian local ring with
depth(R) = d. The following statements are equivalent:

(i) pdimg(k) < 0.

(11) pdimz(M) < oo for all finitely generated R-modules M .

(11i) m is generated by a regular sequence.

(iv) m is generated by d elements.

(v) pdimp(k) = d.

Proof. (i) = (ii) Let pdimpg(k) = n < oo. Then we have Tor’(M, k) = 0 for all i > n and for all
finitely generated R-modules M. Therefore, pdimp(M) < oo for all finitely generated R-modules
M.

(ii) = (i) is obvious since k is a finitely generated R-module.

(i) = (iii) follows from Corollary 4.1.4.

(ili) = (i) If m is generated by a regular sequence xi,...,x,, then the Koszul complex on
x1,...,%, gives a free resolution of k of finite length, which proves pdimpg(k) =n < occ.

(i) = (iv) From Theorem 4.1.1 we know that depth(R) > pu(m). Hence, d > p(m). Thus m is
generated by d elements.

(i) = (v) If pdimg(k) < oo, then by Auslander-Buchsbaum formula we get pdimpg(k) =
depth(R) = d.

(v) = (i) is obvious.

(iv) = (i) Let m be generated by d elements, that is, let u(m) < depth(R). From Lemma 4.1.2
we have depth(R) < p(m). Therefore depth(R) = pu(m) = d. If 24, ..., x4 is a minimal generating
set of m, then by Lemma 4.1.2 we have that the Koszul complex on x4, ..., x4 is exact, and hence
is a free resolution of k of length d. This shows that pdimg(k) =n < oco. [

Proposition 4.1.6. Let (R, m,k) be a regular local ring such that depth(R) = 2. Then u(m) = 2,
and m 1s generated by a regular sequence.

Proof. By Auslander-Buchsbaum formula we have depth(R) = pdimpgz(k) = 2. We know that
p(m) # 1, otherwise we would have depth(R) = 1. Hence, u(m) > 2, and by Theorem 4.1.1 we
have p(m) = 2. Suppose that m = (x1,29). We show that z;, x5 form a regular sequence by
showing that the Koszul complex K (z1,xs) is exact. Consider the Koszul complex on x, x5 as

follows:
05REB R R R/m— 0.
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Since pdimp(k) = 2 and since R? maps minimally onto m, we see that ker(¢) is free. By the
Hilbert-Burch theorem, rank(ker(¢;)) = 1. Let ker(¢1) = ((ai,az)), where aj,as € m. Since
(—x9,71) € ker(¢y), there exists ¢ € R such that (—zy, 1) = c¢(ay, az). Since z1, T € m\ m?, we
must have ¢ ¢ m, and hence ker(¢;) = ((—x2,21)). Therefore, the Koszul complex K (zy,x2) is
exact, and hence xq, x5 is regular. O

Proposition 4.1.7. Let R be a UFD, and let I be an ideal of R such that u(R) = 2. Then,
BR(R/IT) = 1.

Proof. Let I = {x1,22}, and let ay,as € R\{0} such that a;zq + asxe = 0. Let a = ged(ay, as),
and by = ay/a,by = ay/a. Note that byx; + byxs = 0, and by, by are coprime.
Suppose there exist k1, ko € R such that kyx; + kexs = 0.

kixy + koxo =0 = bikixy + bikoxys =0 = —bokiza + bikoxs = 0 = boky = brks.

Since by and by are co-prime, by|k;. Let k; = kby, and thus ky = kby. Hence, the kernel of the map
from Ry to R, which maps the basis elements of Ry to a minimal generating set of I must be a
cyclic R-module. This implies that 35 = 1. O
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Chapter 5

Existence of bounds on projective
dimension and regularity

5.1 Burch’s construction

To start with, I recall a couple of results which will be instrumental in the following proof.

Lemma 5.1.1. Let (R, m, k) be a Noetherian local ring. Let I be an ideal whose associated primes
are minimal over I. IfSB € Ass(I), IpNR is the P-primary component in the minimal irredundant
primary decomposition of I.

Proposition 5.1.2. (Macaulay’s unmizedness theorem) In a Cohen-Macaulay ring R, the ideal I
generated by a reqular sequence is unmized, that is, all associated primes of R/I have the same
height as 1.

Theorem 5.1.3 (Burch). Let (R, m,k) be a Cohen-Macaulay ring and let s be an integer such
that 1 < s < depth(R). Then there exists an ideal Iy of R, generated by three or fewer elements
of R, such that pdim(R/I) = s.

Proof. 1f depth(R) < 3, let I be the ideal generated by a regular sequence of length s.

Suppose depth(R) = d > 3. We inductively construct a sequence {gi, ..., ga@—2)} of elements of
R.

Let g1, 92, 93, g4 be a regular sequence in R. Consider the short exact sequence

0— (g1,92) N (g3, 91) = (91, 92) @ (93,94) = (91, 92, g3, ga) — O.

Since pdim(R/(g1,92)) = pdim(R/(g3,94)) = 2 and pdim(R/(¢1, g2, 93, 94)) = 4, we have that
pdim(R/ (g1, 92) N (g3, 94)) = 3 (follows directly by observing the induced long exact sequence of
Tor modules).

Suppose we have chosen g1, s, ..., gor (k < d — 2) satisfying the conditions that

(1) g2i—1, G2i, 92j—1, 925 is a regular sequence for all 1 < j < k.
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(i) pdim(R/(g1,92) N -+ N (gax—1, g2x)) = k + 1.
By the Auslander-Buchsbaum formula, depth(R/(g1,92) N+ N (gok—1,92%)) =d — k —1 > 2. Let
g2k+1 be a nonzerodivisor and non-unit in R/(g1,g2) N+ N (gog_1, g2x). Then,

depth 1 > 1.

(91,92) N - N (gok—1, Gor) + (g2r41) —

Hence, the ideal (g1,92) N -+ N (g2r—1, gor) + (g2x+1) has no m-primary component. Also, since
depth(R) > 3, for any 1 < i < k, depth(R/(g2i—1, 92i» gor+1) > 0 and (gai—1, g2i, Gor+1) has no m-
primary component. Since R is Noetherian, all ideals of R have finitely many associated primes,
and we can pick gor1o to be a non-unit in no associated prime of (g1, go) M-+ - N (gor—1, gor) + (gor+1)
and in no associated prime of (g9;_1, g2:, gar+1) for any ¢ < k. Then,

R
(91,92) NN (g2r—1, 92k) + (92641, G2k+2)

pdim =k+3,

and hence, by observing the induced long exact sequence of Tor modules, we have that

) R
pdim =k+2.
(91, 92) N -+ N (Gar—1, 92k) N (G2k+15 Gor+2)

Thus, we can construct a sequence {gi, ..., gaq_4} such that {gi,..., gox} satisfies the above con-
ditions for all £k < d — 2.

Observe that (gai—1,92) : (g;) = (g2i—1, g2:) for all i < 2d — 4 and j # 2i,2i — 1. Hence, for each
associated prime B of (go;—1,92:),

(9193 -+ 092d-5,9294 . . -gzd—4)q3 = (921‘—1, gzi)ap-

It follows that PRy is an associated prime of (g193. .. G2d—5, 9294 - - - goa—a)gp in Ry and thus, P

is an associated prime of (g19s...92a—5,9294 - - - g24—4) in R. However, Hj§25—4,j€{2i—1,2i} gj is a
nonzerodivisor in R/(ge;i_1,¢92:) and a zerodivisor in R/(g19s - - - 92d—5, 9294 - - - Goa—4)- This implies
that (9193 ---92d-5, 9294 - - - goa—4) has an associated prime which is not an associated prime of
(921‘—1, 921‘)-

Note that 193 . .. g2d—5, §294 - - . g2q—4 is a regular sequence. Indeed, if g193 ... gog_5h1 = 9294 . .. Gog_sho
for hy,he € R, then ¢193...92a-7h1 = goa—ah3, as {g2d-5, goa—sa} is a regular sequence. Since
{92d-7, 924-4} is also a regular sequence, g19s...¢g2q-9h1 = gaq_shs. Proceeding in this manner,
we get hy = gog_4f1 for some f; € R and similarly, hy = g¢oq_5f2 for some fo € R. Hence,
G193 - - - 92d—7f1 = G294 - - - G246 f2 and we are done by induction.

Hence, all associated primes of (¢193 . - - goa—5, 9294 - - - g24—4) are minimal over (g19s3 . . . §24—5, 9294 - - - G2d—4)
and have height two. Also note that g; is not contained in any associated prime of (ga;—1, g2;) for
any 4, which forces that no associated prime of (ga;_1,¢2i) is an associated prime of (go;_1, g2;)-
Hence,

(9193 -+ -92d-5,9294 - . -g2d—4) = (91; 92) NN (92(1—5, 92d—4) nJ
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where J = Ngea((9193 - - - 92d-5, 9294 - - - Goa—a)pNR), where A = Ass((9193 - - - 92d—5, G294 - - - G2a—4))\
Ur<i<d—2AsS(g2i—1, g2i)-

Fix ¢« < d — 2. Observe that since every associated prime of J has height 2 and is not an
associated prime of (gs;_1, ge;), it must contain a nonzerodivisor in R/(gs_1,92;). Since every
primary component of J contains a power of an associated prime of J, it also contains a nonze-
rodivisor in R/(g2;—1,g2;). The product of the nonzerodivisors corresponding to every primary
component of J produces an element in J which is a nonzerodivisor in R/(g2;_1,go;). Hence,
(G2i-1,92i) + J = (g2i-1, 92) for 1 <i < d — 2.

By prime avoidance, there exists 4 € J such that z4 is a nonzerodivisor in R/(go;_1,¢2;) for
1 <¢<d-—2. Then,

(9193 - - - 92d—5, 9294 - - - G2d—a) * Tqg = (g1, 92) N -+ N (G2d—5, Gad—a)-
Since the projective dimension of (¢193 ... g2q_5, G204 - - - goa—a) is two, the short exact sequence

R ., R R

0— — = = — 0
I: Tdq I (I, SL’d)
(where I = (9193 - - - 92d—5, 9294 - - - G2a—4)) gives us that
R
pdim ) = s.

(9193 -+ 92d—5,9294 - - - §2d—4, Td
O

The above theorem tells us that we cannot hope to bound projective dimension as a function of
the number of generators. This raises the question of whether we can achieve bounds as functions
of the degrees of the generators.

5.2 Stillman’s question and existence of bounds on regu-

larity
Stillman’s question: Let k be a field. Does there exist a bound, independent of n, on the
projective dimension of an ideal in S = k[zy,...,x,] which is generated by N forms of degrees
dy,...,dyN"

Stillman’s question was answered in the affirmative by Ananyan and Hochster [1]. However, the
bounds they produce are far from optimal. Optimal bounds have been given in the some cases,
such as the following:

1. When [ is minimally generated by N quadrics and ht(/) = 2, pdim(S/I) < 2N — 2 [15].

2. When I is minimally generated by four quadrics, pdim(S/T) < 6 [16].
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3. When [ is minimally generated by three cubics, pdim(S/I) < 5. [17].

Definition 5.2.1. Let R be a polynomial ring over a field and M be a finitely generated graded
R-module. The Castelnuovo-Mumford regularity of M is defined as regr(M) = max{j —i :

Bij (M) # 0}.

Note that reg(R/I) = reg(l) — 1 for an ideal I C R.
A question similar to Stillman’s question can be asked on bounds on regularity.

Question 1: Let k be a field. Does there exist a bound, independent of n, on the regularity of
an ideal in S = k[zy, ..., x,] which is generated by N forms of degrees dy,...,dyn?

In fact, as outlined below, question 1 is equivalent to Stillman’s question, if k is infinite. In fact,
even if k is finite, we can consider the algebraic closure of k and arrive at the same conclusion.

Suppose Stillman’s question has an affirmative answer, that is, there is a bound B = B(N, dy, ..., dy)
such that pdim(R/I) < B for any ideal I C S = k[zy,...,z,| which is minimally generated by
N forms of degree di,...,dy. By the Auslander-Buchsbaum formula, depth(S/I) > n — B. Let
f = fi,..., fa_p be a sequence of linear forms in S which is regular in S/I. Such a sequence can
be chosen because k is infinite. Since S is a domain and f1, ..., f,_p are linear forms, fi,..., f,_B
is a regular sequence in R as well. Hence, regg(S/1) = regg, 7 /(S/(I + ().

Now, S/(f) is a polynomial ring in B variables. There exists a bound on the regularity of S/(I +
(f)) in terms of d(J) = max{d,, ...dy} and the number of variables B ([3], Theorem 3.8).

Conversely, assume that question 1 can be answered in the positive, that is, there exists a bound
B = B(N,dy,...,dy) such that reg(I) < B for any ideal I C S which is minimally generated by

N forms of degree dy, ..., dy. Consider gingrevlex(—] ), the generic initial ideal of I with respect to

the graded reverse lexicographic order. By a theorem of Bayer and Stillman ([8], Corollaries 19.11
and 20.21),

pdim(S/I) = pdim(S/gingrevleX(I)), reg(S/I) = reg(S/gingrevleX(I)).

Moreover, the projective dimension of S/gin I) is the number of distinct variables appearing

grevlex(
in all the monomials minimally generating gingrevleX(I ). Observe that for any ideal J of S, we

have that d(J) < J, where d(J) denotes the maximal degree of a minimal generator of M. Hence,

pdim(S/1) = pdim(R/gingreylex (1))
= number of distinct variables appearing in generators of gingrevleX(I )
< sum of degrees of generators of gingrevlex(l)
< (number of generators of gingreyiex(1))d(gingreyiex(!)) (5.1)

number of generators of 8iNgreviex (! reg(glngrevlex(l )

( (1))
= (number of generators of gingreyiex(!))reg(l)
<( (I))B(N,dy,...,dy).

A

number of generators of giNgreyiex
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The ideal gingrevlex([ ) is generated by the initial terms of the elements of a Grébner basis of I,
after a generic change of co-ordinates. Note that a change of co-ordinates on I does not change
the number of generators of I or the degrees of those generators. Hence, without loss of generality,
we can assume that [ is in generic co-ordinates. To complete the proof, we need to bound the
cardinality of a Grobner basis of I in terms of N, dy, ..., dy.

In a process similar to Buchberger’s algorithm, we can attain a Grébner basis by adjoining S-pairs

of the form . . | |
S(f.q) = LCM(ET(?)a in(g)) _ LCM(lilzl((];)), 1n(9))g'

Starting with N generators, the maximum number of elements adjoined to the generating set on
each iteration is a polynomial function in N. Further, deg(S(f,¢)) > max{deg(f),deg(g)} and
this inequality is strict unless in(f) divides in(g) or vice-versa. On the other hand,

deg(S(f,9)) = deg(in(5(f, 9)))
= d(gingrevlex(l>)
< reg(gingrevlex(f)) (5.2)

= reg(/)
< B.

f

This limits the possible iterations in terms of N, dy,...,dy. The proof is thus complete.

5.3 Regularity of modules over a Koszul algebra

Lemma 5.3.1. Let R and M be as in Definition 5.2.1. Then, reg(M(—d)) = reg(M) + d.

The proof follows immediately from the projective resolution of M (—d).

Observe that one can think of regularity of a module as the height of its Betti table. The fact that
the Betti table of M (—d) is d rows of zeroes above the Betti table of M gives us another method
of verifying the above lemma.

Note that reg(M) = max{r : 3i such that Tor®(M, k)., # 0}, where k = R/R,.

Lemma 5.3.2. Let R be a non-negatively graded ring and 0 - A — B — C' — 0 be a short exact
sequence of R-modules. Then

(i) reg(B) < max{reg(A),reg(C)}.

(11) reg(C) < max{reg(B),reg(A) — 1}.

(111) reg(A) < max{reg(B),reg(C) + 1}.

Proof. (i) Set t = reg(B). Then, there exists i such that Tor®(B, k);y; # 0. The induced long
exact sequence on Tor modules gives us the following exact sequence

Torf , (C, k)it — Torf (A, K)ipr — Torf (B, K)iys — Torf(C,k)ire — Tor (A, k)ite.

39



Since Torf (B, k)¢ # 0, Torf (A, k)irs # 0 or Torl(C, k)¢ # 0. Hence, reg(A) > t or reg(C) > t.
(ii) Set t = reg(C). There exists 7 such that Tor’*(C, k)¢ # 0. From the above exact sequence,
Torf (A, k)i # 0 or Torl(B,k);s, # 0. Hence, t + 1 < reg(A) or t < reg(B).

(iii) Set t = reg(A). There exists 4 such that Tor’(A, k)4, # 0. From the above exact sequence,
Torf;(C, k)¢ # 0 or Tor[ (B, k)¢ # 0. Hence, t — 1 < reg(C) or t < reg(B). O

Lemma 5.3.3. Let R be a non-negatively graded ring and M be a graded R-module. Suppose
x € Ry is a nonzerodivisor on M. Then, reg(M) = reg(M/xM).

Proof. Consider the short exact sequence
0— M(-1) 5 M — M/xM — 0.

Let t = reg(M) and s = reg(M/xM). Then, by Lemma 5.3.1, reg(M(—1)) =t + 1. By (ii) of
Lemma 5.3.2, s < t. Similarly, by (iii) of Lemma 5.3.2, t + 1 < s + 1. Hence, s = t. ]

If M is a graded k[xy,...,z,]-module of finite length, let max(M) = max{r : M, # 0}.
Proposition 5.3.4. Let S = k[z1,...,x,], and let M be a graded S-module of finite length. Then,
regg(M) = max{r : M, # 0}.

Moreover, if s = regg(M),
TorY (M, k)45 # 0.

Proof. Consider the Koszul complex as a resolution of k,
0— S(—n)m = S(—n+1)" 1 - ... = S(~1)" =5 = k—0,

where b; = (’;)
Let s = max(M). We have Tor{ (M, k) € M(—i)%. Hence, max(Tor? (M, k)) < max(M(—i)) =
s + 4. Thus, reg(M) < s. Further, note that

(%)

TorS (M, k) = ker(M(—n) —2"— M(—n + 1)").

Observe that S;M, C M, = 0. Hence, 0 # M(—n)s, C Tord(M, k), which implies that
regg(M) = s and TorS (M, k),4s # 0. O

Definition 5.3.5. A Koszul algebra R is a graded k-algebra over which the residue field k has
a linear resolution, that is, regp(k) = 0.

Theorem 5.3.6. Let R be a Koszul algebra, and let Q) = k|Ry] = k[z1,...,x,]. The regularity of
any module M over R is finite. In fact,

regr(M) < rego(M).
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Proof. We first prove the theorem in the case that M has finite length. We proceed by induction
on length of M.

In this case, R/R, = k injects into M via multiplication by an element of M, say, x of degree d.
Let N be the cokernel of this map. We have the short exact sequence

0— k(—d) S M — N —0.

By Lemma 5.3.2, regp(M) < regr(N) or regr(M) < regp(k(—d)) = d (by Lemma 5.3.1). If
regr(M) < regr(N), we can apply the induction hypothesis to conclude that

regp(M) < regp(N) <regy(N) = max(N) < max(M) = regy(M).

On the other hand, if regp(M) < d, then regr(M) < max(M) = regy(M).

In the general case, we use Noetherian induction on the poset of submodules of M ordered by
reverse inclusion. Hence, to prove that regg (M) < regg(M), it is sufficient to prove the following
statement: Given a submodule N C M, if regr(M/Ni) < regg(M/Ny) for all Ny D N, then
regp(M/N) < rego(M/N). Without loss of generality, let N = 0.

If R, is not associated to M, then supposing as we may that k is infinite, there exists an element
x € Ry such that x is a nonzerodivisor on M. The result now follows from the induction hypothesis
and 5.3.3.

If M is not of finite length, but R, is associated to M, let M’ be a maximal submodule of finite
length contained in M and let M"” = M /M’ (note that M’ # 0 because k injects into M). Then,
R, is not associated to M"”. Indeed, if R, was associated to M"”, k would inject into M"” and
hence M” would contain a simple module, contradicting the maximality of M’. As in the proof of
Proposition 5.3.4, Tor (M”, k) = ann,(S; )(—n) = 0. This implies that Tor? (M, k) = Tor’ (M’ k)
and since Tor? (M, K)nireg () = 0, we have rego(M’) < rego(M).

If regr(M") <tegg(M’), by Lemma 5.3.2 and the finite length case treated above, we have that

rega(M) < max{rega(M'), rega(M")}
< rego (M) (5.3)
< rego(M).

If regp(M") > rego(M’), then by the induction hypothesis and the finite length case above,
regr(M') < rego(M') < rega(M") < rego(M").
Since regp(M') < regp(M”), regr(M) < regr(M") by Lemma 5.3.2(i) and regg(M") < regp(M)

by Lemma 5.3.2(ii). Hence, regp(M) = regzr(M") and similarly, reg, (M) = regq(M"”). By the
induction hypothesis, we are done. O
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Chapter 6

Pure Resolutions

6.1 Cohen-Macaulay modules with pure resolution

Definition 6.1.1. Let S = k[zy,...,z,] and let M be a finitely generated non-negatively graded
R-module. We say that M has a pure resolution of type (di,...,d,), where 0 < d; < --- < d, is
a strictly increasing sequence of non-negative integers, if M has a minimal resolution of the form

0— S(=d,) = S(—d, 1) — .- — 8% 5 M —0.

Theorem 6.1.2 (Herzog, Kiihl). Let S = k[zy,...,x,] and let M be an S-module having a pure
resolution of type (di, ..., d,) and Betti numbers (B, ..., [5,), where p is the projective dimension

of M. Then the following conditions are equivalent:
(i) M is Cohen-Macaulay.

(ii) By = bifo fori=1,...,p, where by = (=1)""'[], ﬁ.

Proof. Since the Hilbert series is additive on short exact sequences, and Hg(_g)(z) = 2%/(1 — 2)™,
the pure resolution

0— S(—=d,) = S(—d,_ ) = ... = 8% 5 M0
vields Hy(z) = Y7 (=1)8iz% /(1 — z)", where dy = 0. Recall that there exists a unique poly-
nomial R(z) € Z[z] such that Hy(2) = R(2)/(1 — 2)?, where d = dim(M). Further, d is the
least integer r such that (1 — 2)"Hj/(2) is a polynomial. Let m = n — d, the codimension of

M. By the Auslander-Buchsbaum formula, m < p and m = p iff depth(M) = d, that is, M is
Cohen-Macaulay. We have that

P

(1—=2)"R(z) = Z(—l)’ﬂizdi.

=0

Suppose M is Cohen-Macaulay. Then (1 — z)? divides the right hand side of the above equation.
Conversely, suppose that (1 — 2)P divides the right hand side. Then (1 — 2)™ P*H,(2) is a
polynomial, which forces m > p. Hence, m = p and M is Cohen-Macaualay.
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Thus, we need to prove that (1 — 2)? divides Y 7 (=1)"8;2% iff §; = by for i = 1,...,p, where
bi = |[1,.(d;/dj—1)|. Consider the polynomial S(z ) =1+ >7" 2% (¢; € Q). (1— 2)P divides
S(z) iff S(j)(1) = 0 for j = 0,1,...,p — 1 iff ¢1,...,¢, satisfy the following system of linear
equations

p
S
chz ; o (di—7+1)=0

The matrix corresponding to this linear system is as follows

1 1 1
dl dQ dp
dy(dy — 1) do(dy — 1) dy(d, — 1)
A1) (d—p) dolds—1).. (2 =p) . dyldy—1)...(dy—p)

On applying elementary row operations which do not affect the solution of the system, we obtain
the Van der Monde matrix

1 1 ... 1
d do ... d,
g dy ... d
A=
&t !
with non-zero determinant [[;_;(d; — d;). Let A; be the matrix obtained by replacing the i'h

column of A by (—1,0,...,0). Then,

det(A;) = Hd H (dj — dy,).

J#L k<j,jk#i

By Cramer’s rule,

Hj<i(di - dj) Hi<j(dj - di) i dj —d;

Hence, (1 — z)? divides Y 7_(—1)"Bi2% iff (=1)'8/Fo = ¢, that is, B; = (=1)""" ], 4 %50. O
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6.2 Monomial ideals with linear resolution

Let S = k[xy,...,x,] and I C S be an equigenerated graded ideal, that is, a graded ideal whose
generators fi,..., fr are all of the same degree. Then the Rees ring

R(I) = @jzoljtj = S[flta SR 7fkt] - S[t]

is naturally bigraded with deg(z;) = (1,0) for ¢ = 1,...,n and deg(f;t) = (0,1) for i =1,... k.
Let T'= Sly1, ..., yx]. We define a bigrading on T by setting deg(x;) = (1,0) for i = 1,...,n, and
deg(y;) = (0,1) for j = 1,...,m. Then there is a natural surjective homomorphism of bigraded
k-algebras ¢ : T — R(I) with ¢(z;) = x; for i =1,...,nand ¢(y;) = fit for j =1,... k.
Let

Fo:0—-F,—F,1— - —F—R(I)—0

be the bigraded minimal free T-resolution of R(I). Here F; = @;T(—a;j, —b;;) for some a;;, b;; €
ZL>q, for i =0, ...,p. Define the z-regularity of I to be

reg,(R(I)) = max{a;; — i}.

Note that any homogeneous f € S has bidegree (deg(f),0) as an element of 7. Hence, given a
bigraded T-module M, M, ) is a graded S-module for every n. It follows that for all n, the exact
sequence F, gives an exact sequence of graded S-modules

Note that considering R([)(.,n) is isomorphic to I" as a S-module. However, as graded S-modules,
R(I)(+,n) is isomorphic to I™(dn), because (R(I)(n))a = I"(a+dn) as k-vector spaces (an element
with bidegree (a,n) in R([) is mapped to an element with bidegree (a + dn,0)).

Also note that (T'(—a, —b)) () is isomorphic to the free S-module ®)yj=p—pS(—a)y®. It follows
that G is a (possibly non-minimal) graded free S-resolution of I™(dn).

The following result is due to Romer ([21]).

Theorem 6.2.1. With the notation introduced above,
reg(I") < nd+ reg,(R(I)),
for all n > 0. In particular, if reg,(R(I)) =0, I" has a linear resolution for all n > 0.

Proof. The resolution G, above yields at once reg(I"(dn)) < reg,(R(I)), and hence, reg(I") <
nd + reg, (R(I)).

If reg,(R(I)) = 0, we have reg(I™) < nd. Since I" is generated in degree nd, I" must have a linear
resolution. O

Corollary 6.2.2. With notation as above, let P = ker(¢). Then each power of I has a linear
resolution if for some monomial order < on T, the ideal P has a Grobner basis G whose elements
are at most linear in the variables x1, ..., x,, that is, deg,(f) <1 for all f € G.
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Proof. The hypothesis implies that in(P) is generated by monomials uy, . .., u; with deg, (u;) < 1.
Let C, be the Taylor resolution of in(P). The module C; has basis vy with I C {1,...,k}, |[I| = 1.
Each basis element e, has the multidegree (as,by) where 2%y® = LCM{u; : j € I}. It follows
that deg,(e,) <1 for all e, € C;.

The shifts of Cy bound the shifts of a minimal multigraded resolution of in(P), we conclude that
reg,(T/in(P)) = 0. By Corollary 3.1.19, reg,(T/P) < reg,(T/in(P)). Hence, reg,(T/P) =0 and
the result follows from Theorem 6.2.1. O

Now, suppose [ is a squarefree monomial ideal generated in degree 2. We may associate to I a
graph G whose vertices are numbered 1,...,n, and {7, j} is an edge of G iff x;z; € I. The ideal
I is called the edge ideal of G and denoted by I(G). The assignment G — I(G) establishes a
bijection between graphs and squarefree monomial ideals generated in degree 2.

The complementary graph G of G is the graph on the same vertices, but whose edges are the
non-edges of G. A graph G is called chordal if each cycle of length greater than 3 has a chord.

Theorem 6.2.3. (Froberg,[11]) Given a graph G, I1(G) has a linear resolution iff G is chordal.

Let A be a simplicial complex, and denote by F(A) the set of facets of A. A facet F' € F(A)
is called a leaf if either F' is the only facet of A, or there exists G € F(A), G # F such that
HNF C GNF for each H € F(A) with H # F. A vertex i of A is called a free vertex if i
belongs to precisely one facet.

A simplicial complex A is called a quasi-tree if there exists a labelling Fi, ..., F,, of the facets
such that for all 7, the facet F; is a leaf of the subcomplex (Fi,. .., F;). We call such a labeling a
leaf order.

Theorem 6.2.4. (Dirac) A graph G is chordal iff G is the 1-skeleton of a quasi-tree.

Proposition 6.2.5. Let I C S be a squarefree monomial ideal with 2-linear resolution. Then after
suitable renumbering of the variables, we have: if v;x; € I withi # j, k > i and k > j, then either
x;x or x;T, belongs to 1.

Proof. Let G be the graph such that I(G) = I. By Theorems 6.2.3 and 6.2.4, G is the 1-skeleton
of a quasi-tree A. Let Fi, ..., F,, be a leaf order of A. Let i; be the number of free vertices of the
leaf F),,. We label the free vertices of F,,, by n,n —1,...,n —i; + 1, in any order. Next F}, 1 is
a leaf of (F,..., Fy,_1). Label the iy free vertices of F,,, 1 by n —iy,...,n— (i; + i) + 1, in any
order. Proceeding in this manner, we label all the vertices of A, that is, those of GG, and choose
the numbering of the variables of S according to this labeling.

Suppose there exist ¢, 7 such that z;z; € I and k > ¢,7 such that z;z, ¢ I and x;z, & I. Let
r be the smallest number such that I' = (F}, ..., F,) contains the vertices 1,..., k. Then, by the
numbering of the variables, k € F, is a free vertex in I.

Since z;xy & I, {i,k} is an edge in A. Suppose {i,k} is not an edge in I". Let p be the smallest
number such that F), contains the edge {i,k}. Since F, is a leaf in (F},..., F),), there exists
ge{l,...,p—1} such that i € F,, and k € F, (since i and k belong in the intersection of F}, with
other facets). This contradicts the choice of p. Hence, {i, k} and similarly, {j, k}, are edges in .
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Since F, is the only facet containing the vertex k, i and j must be vertices of F,. as well. However,
this implies that {i,7} is an edge of F,, and hence of A. This contradicts the assumption that
xr;xj € 1. O

We now consider a monomial ideal I generated in degree 2 which is not necessarily squarefree
Let J C I be the ideal generated by all squarefree monomials in I. Then I = («7 ...,z ,J) for
distinet iy, ..., € {1,...,n}.

Lemma 6.2.6. If [ has a linear resolution, so does J.

Proof. Polarizing (section 3.2) theideal I = (27 ,..., 27 ,
where the vertices —i correspond to the variables y; and as usual, the vertices ¢ correspond to the
variables ;. Let G be the restriction of G* to the vertices 1,...,n. Then, J is the edge ideal of
G.

By Corollary 3.2.5, if I has a linear resolution, so does I*. Hence, by Theorem 6.2.3, G* is chordal.
Thus, G is chordal and by Theorem 6.2.3, J has a linear resolution. O

In the situation of Lemma 6.2.6, let J = I(G), and let A be the quasi-tree whose 1-skeleton is G
(Theorem 6.2.4).

Lemma 6.2.7. If I = (z7,...,x;,J) has a linear resolution, then i; is a free vertex of A for

7 =1,...,k, and no two of these vertices belong to the same facet.

Proof. The hypothesis implies that G* is chordal.

Suppose i; is not a free vertex of A for some j. Then there exist edges {i;,7} and {i;, s} in G
such that {r,s} is not an edge in G. Then {ij,r} and {i;, s} are also edges in G* and {r,s} is
not an edge in G*. Since xy,y; € I*, {ij, —j} is not an edge in G*, and since z,y; and z,y; do not
belong to I*, it follows that {—j, r} and {—j, s} are edges in @. Thus, {i;,7}, {r,—j}, {7, s}
and {s,i;} form a cycle in G* of length 4 without any chords, a contradiction.

Suppose i; and i are free vertices belonging to the same facet of A. Then, {i;,4}, {i,—7j},
{—j, =1} and {~1,4;} is a cycle in G* without any chords. ]

x? J) has a linear resolution and x? € I. Then with the

Corollary 6.2.8. Suppose I = (z7,,... 27 ,
numbering of the variables as given by Proposition 6.2.5 (applied on J), the following holds: for

all j > i for which there exists k such that xpx; € I, we have x;x; € I or x;xy, € 1.

Proof. Suppose 27 € I and there exists j > ¢ for which there exists k such that zyz; € I, but x;x;
and x;x; do not belong to I. Then i # k.

If k # j, then {k, j} is not an edge of A, but {4, j} and {4, k} are. Hence, i is not a free vertex of
A, which contradicts Lemma 6.2.7.

If £ = j, then m? € I and j is a free vertex in A. However, since {i,7} is an edge in A, i and j
must belong to the same facet, which contradicts Lemma 6.2.7. ]
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Theorem 6.2.9. Let I C S be a monomial ideal generated in degree 2 and suppose that I possesses
the following properties (*) and (*¥*):

(*) if vix; € 1 withi # j, k > i and k > j, then either x;xy or x;xy belongs to I;

(**) if 27 € I, then for all j > i for which there exists k such that zyx; € I, we have x;x; € I or
rix, € 1.

Let R(I) = T/P be the Rees ring of I. Then there exists a lexicographic order <joy on T such
that the reduced Grobner basis G of the defining ideal P with respect to <o consists of binomials
f €T with deg,(f) < 1.

Proof. Let €2 denote the graph with vertices 1,...,n + 1 whose edge set E(£2) consists of those
edges (and loops) {i,7}, 1 <i < j <n, with z;x; € I together with the edges {1,n+ 1}, {2,n +
1},...,{n,n + 1}. Let k[?] denote the affine semigroup ring generated by those quadratic mono-
mials z;2;, 1 <i < j <n+1, with {i,j} € E(Q). Let T' = k[x1, ..., Tn, {Ufij} F<i<j<n {ijleB©))
be the polynomial ring and define the surjective homomorphism = : T — k[§2] by setting 7(z;) =
T;¥ny1 and m(yg 3) = ;2. The toric ideal of k[ is the kernel of 7. Note that the Rees ring
R(I) is isomorphic to k[Q2] and we can identify the defining ideal P of the Rees ring with the toric
ideal of K[Q].

Introduce the lexicographic order <jo, on 71" induced by the ordering of the variables as follows:
(1) yij > ypg if (a) min{i, j} < min{p, ¢} or (b) min{3, j} = min{p, ¢} and max{7, j} < max{p, ¢}.
(i) ygijy > o1 > 22 > -+ > x,, for all yy; 5.

The Graver basis of an ideal is defined in [22] (Ch.4). It is proved in [18] that the Graver basis of
a toric ideal P coincides with the set of all binomials f, (notation explained below), where 7 is a
primitive even closed walk in €. Further, the universal Grobner basis (defined earlier) is contained
in the Graver basis ([22], Proposition 4.11). A minimal Grébner basis G of P with respect to <jey
can be obtained as a subset of the universal Grobner basis of P. It follows that every element of
G is of the form f,, where 7 is a primitive even closed walk in €.

Let f be a binomial belonging to G' and

I = ({wr, wa}, {wa, w3}, ..., {wom, wi})

be the primitive even closed walk associated to f. This means that setting v;,+1 = z; and

Wam+1 = Wi,
m m
f=Jr= | | Ywop 1 ,war, — Hyw2k7w2k+l'
k=1 k=1

We need to prove that deg,(f;) < 1, that is, among the vertices wy, ..., ws,, the vertex n + 1
appears at most once. Let y,, ., be the biggest variable appearing in f with respect to <}y, with
wy < wy. Note that injey (fr) = [Ti 1 Yiwae_1,wse}- We denote this as in( fr.

Note that w; # n + 1 because wy = n + 1 forces wy = n + 1 and ypq1041y € 1. If wo = {n + 1},
Y, Deing the biggest variable in f implies that I' must be ({wy, ws}, {ws, w1}), in which case
fr = 0. Thus, suppose that wy < n + 1. Let k; be the smallest integer such that wy, =mn + 1.
Case 1: Suppose k; is even. Since {n + 1,w,} € E(2), the closed walk

F, = ({wh w2}7 {w27 w3}> R {w]ﬂ*l? wk1}7 {wklvwl})
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is an even closed walk in Q with deg,(fr) = 1. Since frr € I, in(g) must divide in(fr) =
Y{ws ws}Y{ws wa) - - - Y{wy, _1,wi, }» Which divides in(fr), for some g € G. Since G is a minimal Grébner
basis, we have in(g) = in(fr) and hence, in(frr) = in(fr). Thus, k; = 2m and the vertex n + 1
appears only once in I'.

Case 2: Suppose k; is odd. Suppose there exists ko > k; such that wy, =n 4+ 1. We can further
assume that w; #n + 1 for ky < i < ks.

Case 2a: Suppose ko is odd. Then consider the subwalk of I,

F” - ({wh v 7w2}7 ERE| {wkl—h wk1}7 {wkw wkg—l—l}a sy {w2m7 wl})

I is a closed even subwalk in 2, which contradicts that I" is a primitive even closed walk in €.
Case2b: Suppose ko is even. Let C' be the odd closed walk

C= ({wknwlirl}’ {wk1+17 wk1+2}7 ) {’ka,l, wkz})

in . Since both w; and wy are not equal to n+1, {ws, wy, } and {w, wy, } are edges in Q. Consider
the even closed walk

" — ({wh w2}7 {w27 wkl}, C, {wk;QJ wl})

in €. The initial monomial in(fr») divides in(fr) and hence, in(fr») = in(fr). The monomial
in(frw) has degree % + 1 and in(fr) has degree m. Equating the degrees, we get ky — ky =
2m — 3, which forces ks = 2m and k; = 3 because 3 < k; < ky < 2m. Hence, I'" = T'. We also
have that ws = we,,, = n + 1.

We claim that none of the vertices of C' coincides with w; or wy. Given a vertex w;, consider the
two paths

Cl = ({wg, w4}, ey {wi_l, w,}),
02 = ({’LUgm, wgm_l}, ey {le, ’LUZ})

Since C'is odd, one of C; and 'y must be odd and the other must be even. Suppose C is odd
and (5 is even. If w; = wq, then

({wb w2}7 {w27 me}a 02)

is an even closed walk in €2 and contradicts the assumption that I' is a primitive even closed walk.
If w; = wq, then the walk

({w2, w3}, C1)
gives us a contradiction. A similar argument works if C is even and C5 is odd. Hence, w; # w;
and w; # wy for 3 <1 < 2m.
Case 2b(1): Suppose there exists p > 0 with 3 + (p + 2) < 2m such that ws(p1) # Wsy(pt2) (this

is equivalent to supposing that the cycle C' contains at least 3 distinct vertices). Let Wy, Wy, W3
and Wy be the walks

Wl = ({’U)g, w4}7 BRI {w4+pa w5+P})7

Wy = ({mea wszl}, ceey {w6+p7 w5+p}>7
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Wi =W; — {w4+p> w5+p}>
Wi =Ws + {wssp, wasp}

in €). Note that since C' is odd, one of W; and W5 must be odd and the other must be even.
Assume that W; is odd and W5 is even. Then, W3 is even and W, is odd. A similar argument
works if WW; is even and W5 is odd.

Suppose {wa, wyip} € E() or {wa, ws4,} € E(2). Then we can construct an even closed walk
Iy in Q such that in(fr,) divides in(fr) and deg,(fr,) = 1. This walk is constructed as follows:
suppose first that {ws, wsi,} € E(€2). Then,

I = ({w2>w1}, {wl,wzm}, Wy, {w4+p7w2})'

If {wy, ws1,} € E(Q2), then

I'h = <{w2,w1}> {wl,ws}, Wi, {w5+p7w2})-

Note that in(fr,) divides in(fr) in both cases (even if w; = w,, we have that w; < ws,, because
of the minimality of y,, ., and further, w; < wsy, because 3 < 5+ p < 2m). Hence, we must
have in(fr,) = in(fr) and on comparing degrees, we get 222 = m. This leads to a contradiction
because p 4+ 2 < 2m — 3.

Suppose {wq, way,} € E(2) and {wq, w54, } € E(Q).

If wy # wy, by (¥), wy < wyyp Or Wy < wsy, (we already know that wyi, and ws,, are not equal
to wy). If wy < wyyy, then since wy < wq, we have {wy, wyi,} € E(2). Then we can consider the
even closed walk

FQ — ({w17 w2}7 {7 Wa, 'lUQm}, W47 {w4+p7 wl})

in €. Proceeding as above (and using that we < wyy,), we get p = 2m — 5, a contradiction. If
Wy < Ws4p, we have {wy, watp} € E(2). In that case, consider the even closed walk

F3 - ({w17 w2}7 {7 Wa, UJQm}, Wla {w5+p7 wl})

in  and proceed as above.

If wy = wy, since wy < Waypt, by (*%), {wi, wssp} € E(Q) or {wy, ws1,} € E(Q). Then we can
construct the walk I'; or I's and proceed similarly.

Case 2b(ii): The only case remaining is when C' = ({n + 1,75},{j,7},{J,n + 1}). The three
possibilities are w; < wy < j, w1 < j < wy and w; = we < j. On applying (*), (**) and (**)
respectively, we get {wy,j} € E(Q) or {ws,j} € E(Q) in each case. If {wy,j} € E(f), consider
the walk I'y = ({wy, wa}, {we,n + 1}, {n + 1,7}, {j,w1}). As before, we get inp, = inp, which is
not possible on comparing degrees. A similar argument works in {ws, j} € E(Q). ]

Corollary 6.2.10. Let I be a monomial ideal in S generated in degree 2. Then, I has a linear
resolution iff each power of I has a linear resolution.

Proof. Follows immediately from Theorem 6.2.9 and Corollary 6.2.2. O
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6.3 Associated graded modules with pure resolution

Let A =Kk|[[x1,...,2,)] and m = (z1,...,2,). Let G,(A) be the associated graded ring of A with

respect to m, that is,
d

Cul4) =D Lt

d>0

It is well known that Gn(A) = Kk[xq,...,x,] = S. Let M be a finitely generated A-module and
Gu(M) = @ oo m*M/m?* M be the associated graded module of M with respect to m.
Note that Gy (M) is a S-module. The goal of this section is to figure out when G, (M) has a free
S-resolution.
Given any element v € M, v € méM \ m 1M for some d > 0. Hence, there is we have an element
in Gy (M) which naturally corresponds to v, and we denote this element by v € meM /md+1 M.
Let ¢ : A — A* be a non-zero A-linear map. There exists s > 0 such that Im(¢) C m®A* and
Im(¢) ¢ m* A*. Let ¢ = (a;;) where a;; € A. By assumption, a;; € m*. Consider ¢* : S' — S*,
¢* = (aj;). It follows that

¢ =) ¢,

Jj=s

where ¢} is a matrix with homogeneous entries of degree j. Set in(¢) = ¢;. We call in(¢) the
initial form of ¢. Set v(¢) = s, the order of ¢.
Let

F:0sF, s F == F 2% F—0

be a minimal A-resolution of M. Let ¢; = v(¢;) and d; = 22:1 ¢ fori =1,...,p. Let 5, =
Bi(M). Since ¢; o ¢;+1 = 0 and in(¢;) contains only the lowest degree terms of ¢;, it follows that
in(¢;) oin(¢;+1) = 0. Hence, we have a complex

in(F):0— S(—dp)ﬁp M S(—dpfl)ﬁpfl R S(_dl)ﬂl 1H(¢1)> Sho s (.

Note that if M is minimally generated by {v1, ..., v} as an A-module, then by Nakayama lemma,
v; ¢ mM. The associated graded module Gy,(M) is minimally generated by {v}, v, ..., vi} C
M/mM as a S-module. In this case, fy = k and suppose that the map ¢ : Fy — M was defined
as ¢o(w;) = v;.

We thus have a natural S-linear map € : $% — G, (M) defined as e(w;) = v}

7

Lemma 6.3.1. With notation as above, € is surjective and € o in(¢;) = 0.

Proof. The map e is surjective as {v],v5,...,v}} is a generating set of M.

Let ¢1 = (ai;) and in(¢y) = (b;;). Since ¢g o ¢1 = 0, Zle a;;v; = 0 for all 7. We need to prove
that 3% byvr = 0.

Suppose v(¢1) = d. Then, note that the component of Zle a;jv; = 0 in m?M \ mT M is precisely
the sum % byv:. Hence, S | bijur = 0. O
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Lemma 6.3.2. Let F o, Ey L0 M =0 be part of a minimal resolution of M. Assume that the
minimal resolution of Go(M) has the form

e §U—8) B Gl(Fy) S Ga(M) — 0,

that is, assume that the first shift is pure. Set N = Im(¢;) and F = {N; = m'F; NN}z (mi =S
fori <0). Then
(i) Ny =m'=*N for all i > 0.
(i1) rank(F}) = a.
(iii) v(¢1) = s
(iv) The sequence
Gu(F1)(—s) 2% G (Fy) S Gu(M) — 0

can be extended to a minimal resolution of Gy(M).

(v) Im(in(¢1)) = Gm(N)(=5).

Proof. (i) By the Artin-Rees lemma, we know that F is an m-stable filtration. Consider the
module

miFg/mi“Fg ~ m"FO/m"“FO
MiFy N N) /(M Fy N N)  (miFy NN + mit Fy) jmit i F
miFO

I

miFy NN + mitl [
m'Fy/(m'Fy N N)
(M Fo NN + mitLEy) /(miFy N N)
(miFy + N)/N
mHFy /(mit L Fy N (miFy N N))
(miEy + N)/N
ComitlEy /(mit L Fy N N
(m'Fy + N)/N
(mit1Fy + N)/N
mEy + N
mitlfy + N
m'(Fo/N)
mH (Fy/N)
. WM
mitN

2

I

Since all the isomorphisms in the above simplification are natural, we have the exact sequence

0= Gr(N) = Gu(Fy) = Gu(M) — 0.
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By the hypothesis above, it follows that Gz is generated in degree s. So we have N; = N for i < s
and
Ns+j _ mj Ns

Nyijn Ngp1

= Ns+]’ == m]Ns + Ns+j+1 - ij + Ns+j+1,

for j > 1. As F is m-stable, there exists jo such that Ny ;11 = mNgy,; for all j > jo. For j > jo,
Ngij =m/N + Ngijy1 = /N + mN,, ;. By Nakayama Lemma, Ny; = m/N.

We show by descending induction that Ny ; = m/N for all j < jo. This is true for j = jo by the
previous argument. Assume Ny = m/TIN for some j < jo — 1. Then,

mj+1N C mNS+] C N5+j+]_ - m]+1N

Hence, Ngij41 = mNgy; and Ngij = m? N + mNg ;. By Nakayama Lemma, Ny, ; = m/N.

(ii) By (i), GF(N) = Gu(N)(—s). Hence, the map 1) maps the basis elements of S* to a minimal
generating set of Gy, (V). As observed previously, a minimal generating set of G\, (V) has the same
cardinality as a minimal generating set of N. The cardinality of the minimal generating set of
N =Im(¢,) is rank(F}). Hence, a = rank(F}).

(iii) Set r = v(¢;). By Lemma 6.3.1 and the discussion preceding it, we have a complex

Gl F) (=) 9, G (R 5 Ga(M) — 0.

So ker(e) contains an element of degree r, which forces that s < r by (i). Further, note that
N = Im(¢;) C m"®)F) = m"Fy. Hence, N; = N for j <r, which forces that s > r.
(iv) Consider the following sequence

e
m TR S miF) S miM =0,

for i« > 0, where v;_, and ¢; are the restrictions of ¢; and ¢y to m~*F} and m'F; respectively.
Observe that ker(e;) = N Nm'Fy = N; = m**N and the map ~,_, naturally maps m'*F}
surjectively to m=*N. Hence, the above sequence is exact. We tensor this exact sequence with
A/m to get the exact sequence

™

mi_sFl Yi—s, miF() = m’M

mi—stl |y ’ mitlF miti M — 0,

1

for all 7 > 0. Thus, we have an exact sequence

Cu(F)(=8) 25 Gul(Fy) 22 Gu(M) — 0.

By definition, ¢y = €. If one thinks of ¢;, and hence v;_,, as a matrix, then it follows that the map
¥i_s can be represented by the matrix corresponding to in(¢;) (note that s = v(¢) from (iii)).
Therefore, ¢, = in(¢;). Further, as Gy (F}) = S? from (ii), we have that in(¢;) maps minimally
onto ker(e) and hence, the above short exact sequence can be extended to a minimal resolution of
Gn(M).

(v) This follows from the exact sequences in the arguments presented for (i) and (iv) above. [
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Theorem 6.3.3. Let M be a finitely generated A-module. Assume that G (M) has a pure res-
olution. Let F be a minimal free resolution of M. Then in(F) is a minimal free resolution of

Gu(M).

Proof. We proceed by induction on pdim(M). For pdim(M) = 0, M is free and so is G (M).
Thus, the statement of the theorem holds.
Suppose pdim(M) = p > 1. Suppose the free resolution of M is

0 F 2 o5 B 2 1 2% M -0,

and let ¢; = v(¢;) and d; = Z;zl ¢j. Let N =1Im(¢;). Since M has a pure resolution, by Lemma
6.3.2,

Gu(F)(—di) 2 G (Fy) — M = 0
can be extended to a minimal resolution of G (M), and Im(in(¢1)) = Gu(N)(—d1). Hence, Gn(N)
has a pure resolution as well. Since pdim(N) = p — 1, by the induction hypothesis,

) 1N(¢p)

0 — Gul(E,)(—d, + dy o (R (—dy + dy) 2 G (V) S0

is a minimal resolution of Gy (V). It follows that

) n(¢p)

0 = Gul(E,)(—d, e Ga(FD) (—dy) 2 G (R = M 0,

which is precisely in(F), is a minimal resolution of M. ]
To prove the next major result, we require the following technical lemma.

Lemma 6.3.4. Let R be a Noetherian local ring and N be a Cohen-Macaulay R-module. Suppose
K is a non-zero submodule of N. Then, dim(K) = dim(N).

Proof. The proof follows by induction on dim(N). The statement is trivial for dim(/N) = 0.
Assume that the statement of the lemma holds for dim(/N) < d. Suppose dim(N) = d > 1. Let
K be a non-zero submodule of N. There exists x € R such that x is a nonzerodivisor on N,
and K ¢ N (by Krull’s intersection theorem). Then, N/xN is a Cohen-Macaulay R-module of
dimension d — 1. Note that K/(K NxN) naturally injects properly into N/xN and hence, by the
induction hypothesis, dim(K /(K NzN)) = dim(N/xN) =d — 1.

Observe that since t K C KNz N, K/x K naturally maps onto K/(KNzN). Hence, dim(K/zK) >
d—1. The element z is also a nonzerodivisor on K, which forces dim(K/xK) = dim(K)—1. Hence,
dim(K) > d, and further, dim(K) = d as K is a submodule of N. O

Theorem 6.3.5. Let M be a Cohen-Macaulay A-module and let p = pdim(M). Let §; = B;(M)
and
F:0—>Fp&>—>Fp_1—>---—>F131—>FO—>O
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be a minimal resolution of M. Let ¢; = v(¢;) and d; = 22‘:1 ¢j. The following conditions are
equivalent:
(i) G (M) has a pure resolution.
(ii) The following hold:
(a) in(F) is acyclic.
(b) Bi = biBy fori=1,....p, where b; = (—1)""! I, ﬁ.
(c) The multiplicity of M,

T =1

Proof. Suppose G (M) has a pure resolution. By Theorem 6.3.3, in(F) is a minimal resolution
of Gn(M) and hence, 5;(Gn(M)) = f; and the shifts of the minimal resolution of G, (M) are
dy,...,d,. Recall that dim(M) = dim(Gn(M)) ([5], Theorem 4.5.6). By the Auslander-Buchsbaum
formula, depth(Gn(M)) = n — pdim(Gn(M)) = n — pdim(M) = depth(M). Hence, G,(M) is
Cohen-Macaulay. The statements (ii)(b) and (ii)(c) thus follow from Theorem 6.1.2 and [4] (page
88).

Conversely, if in(F) is acyclic and the Betti numbers satisfy the Herzog-Kiihl conditions, then
by Theorem 6.1.2; E = coker(in(¢;)) is Cohen-Macaulay of dimension n — p (by the Auslander-
Buchsbaum formula). Recall that we also have a surjective homomorphism € : Gy, (Fy) — Gn(M)
with € oin(¢;) = 0. Therefore, Im(in(¢;)) C ker(e) and we have an exact sequence

0—-K—FE—Gy(M)—0.

Note that dim(K) < dim(F) = dim(Gn(M)). As multiplicity of E equals multiplicity of G (M),
the degree of the Hilbert polynomial of K must be smaller than the degree of the Hilbert polynomial
of E and hence, dim(K) < dim(FE). By Lemma 6.3.4, K = 0. So Gn(M) = E has a pure
resolution. [
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Chapter 7

Explicit construction of some resolutions

7.1 The Taylor resolution

Let S =k[zy,...,z,] and fi,..., fi be non-constant monomials in S.

Let Fs be the free module on the basis elements {v; : I C {1,...,t},|I| = s}. Set fr = LCM(f; :
i€1). Let Fy = 1.

Suppose I = {iy,...,is} C{1,...,t} and J C {1,...,t}, |J| = s — 1. Then, define

o Jg 1
e (=D)*f1/f; if I =JU{ix} for some k.

Define d, : Fy — F,_1 as ds(vr) = Y ; ¢ryvy. Finally, define the Taylor’s complex T'(fi, ..., f;) to
be
O—>Ftﬂ>Ft_1—>---—>F1 $F0—>0.

We prove that the Taylor’s complex is a resolution of S/(fi,..., fi) by induction on ¢. The base
case t = 1 is clear. Assume that T'(hy,...,h;) is a resolution of S/(h4, ..., h:) for any monomials
hi,...,h; €8S.

Consider monomials fi,..., fix1 inS. Fori=1,... ¢, let g; = f;/GCD(f;, fi+1). By the induction
hypothesis, T'(g1, ..., g:) is a resolution of S/(g1,...,g:). Consider the short exact sequence

0= S/(g1,- 00) =25 S/ (Fire o f) = S/ (Frre o frar) = 0.

The first map in this short exact sequence can be induced to a map of complexes
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G, i s F,
8¢ dy
G2 22 > FQ
82 da
Gl oL > F1
81 d1
Go 20 > Fg

S/(gr,- s g) S/(fl,\...,ft) S/ (fr s o)

where G is a free module on the basis elements {w; : I C {1,...,t},|I| = s}, ds is the usual map
in the Taylor complex and s(wr) = —(g1/ f1) feyavr for s € {1,...,t}.

Claim: d;¢; = ¢;_10; for all i > 1.

Proof. Let I C S, |I|=iand A={J C{1l,...,t} : |J| =i — 1} Then,

digi(wr) = di(=(g1/ f1) frervr) = =91/ F) fin D cryvs,

JeA

where

o Jg 1
e (=D)*f1/f; if I =JU{ix} for some k.

On the other hand,

$im16i(wr) = ¢im1 (D brywy) = —frar Y brslgs/ fr)vs,

JeA JeA
where
b — 0 Jg1
Y (—=D¥gr/g; if I =JU{i} for some k.
In both cases, the coefficient of vy if J Ui, = I is precisely (—1)*g;/f;. ]
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Note that deg((g;/f1)fi+1) = deg(LCM(f1, fix1)/fr) > 1, which implies that all the elements of
the matrix corresponding to ¢; belong to the homogeneous maximal ideal (x1,...,z,). Hence,
using the mapping cone theorem, we have a resolution of S/(fi,..., fii1)

Hy:0— Hyy 5% Hy — -+ — H <5 Hy — 0,
where Hy = Fy and H; = G;_1 @ F; for ¢ > 1. The maps ¢; : H; — H;_; are defined as
€i(g, f) = (0i-1(9), —=di(f) — ¢i-1(g))-

Observe that H; is a free module on the basis elements {w; : [ C {1,...,t},|I|=i—1}U{v;: I C
{1,...,t},|I| = ¢}. Consider the following basis of H;: {u;: I C {1,...,t+ 1}, |I| =i}, where

. {wl_{m} t+1el
(—DHHy t41¢1.
Suppose t +1 € I and |I| =4. Let A, ={J C {1,...,t}:|J| =i}. Then,
ei(ur) = Ei(wl—{t+1})
= (0i—1(wr—ge11y), — i1 (wr—{111}))
= ( Z browy, (gr—ges1y/ fr—gee1y) ferrVi—es1y)

JEA; 2
= ( Z bryuyg, (_1)i+1(gl—{t+1}/fI—{t+1})ft+1uI—{t+1}) (7,1)
JEAi_Q
= (Y by, aru_gay)
JeN;,_o
= Z arjug.
JEN;_1
In the above computation, the following simplification has been used: for I C {1,...,t},
fi .
=LCM(——+——:1€1
g1 fr1 (GCD(fz‘>ft+1) i €1)fi
LCM( f;, _ .
— LCM( (f ft+1) = [)ft+1 (7 2)

ft+1
= LOM(fi:i € TU{t+1}).

Suppose t + 1 ¢ I and |I| =i. Then,
ei(ur) = &((=1)!"*oy)
= (0, =(=D)!"*'d;(vy))
= (0, (=" eryvy) (7.3)

JEA;

= E arjug.

JEN;_1
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The differentials maps € are hence precisely the maps in the Taylor complex whose free modules
are generated by u;’s. Hence, we have proved by induction that the Taylor complex provides a
resolution of monomial ideals.

The Taylor’s resolution need not be minimal. For example, suppose S = k[z1, o, 23], f1 = 179,
fo = xoxs, f3 = xywg. Let I = {1,2,3} and J = {1,2}. Then, f; = f; = z12023 and ¢;; =
(=12 f1/fsr = =1 & (21,22, 33).

However, if I is a stable ideal, we can construct a minimal free resolution of I.

7.2 The Eliahou-Kervaire resolution

Let S =k[xy,...,z,].

Suppose [ is a monomial ideal in S. We denote by G(I) a minimal generating set of I. Given a non-
constant monomial a = z{* ... z%, let max(a) = max{i : a¢; > 0} and min(a) = min{i : a; > 0}.
Define min(1) = oo.

Recall that a monomial ideal I is said to be stable if for every monomial w € I, 2;w/%maz(w) € I
for all i < max(w). We begin with some lemmas on stable ideals which shall be needed in the
construction of the Eliahou-Kervaire resolution.

Lemma 7.2.1. Let I be a stable monomial ideal with canonical generating set G(I). For every
monomial w € I, there is a unique decomposition

w=uy
with w € G(I) and max(u) < min(y).

Proof. Given a monomial w € I, there exists v € G(I) and z € S such that w = v.z.
Suppose max(v) > min(z). Let ¢ = min(z) and m = max(v). Then, by the stability hypothesis,
x;v/xy, € I and hence we can write

w = (z;v/xm) (xmz/x;),

where x;v/x,, is itself a multiple of some monomial v € I. Hence, w = v'.2’ for some suitable
monomial 2’ € S.

Note that on passage from v = 25" .. .xbn to v/, the non-negatively valued function f(v) = Y1
is strictly decreasing. Hence, after finitely many iterations of the above process, we must have
w = u.y, where v € G(I) and max(u) < min(y).

Suppose w = u.y = u'.y’, where u,u’ € G(I), max(u) < min(y) and max(u') < min(y’), then u, v’
are both initial segments of u and one of them must divide the other. Since w,u’ € G(I), this
forces that u = v/ and hence, y = 3. Thus, the decomposition is unique. O

This unique decomposition of a monomial w € I will be called the canonical /-decomposition
of w.
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For a stable ideal I, let M (I) denote the set of all monomials in /. Define the decomposition
function
g: M(I)— G(I)

by g(w) = w if w = w.y is the unique /-canonical decomposition of w.

Lemma 7.2.2. Let I be a stable ideal and let g : M (I) — G(I) be its decomposition function. Then
for allw € M(I), and all monomials y, the equation g(wy) = g(w) holds iff max(g(w)) < min(y).

Proof. Suppose g(wy) = g(w). Then the canonical decomposition of wy reads

wy = g(wy).z = g(w).z,

where max(g(w)) < min(z). Since g(w) divides w, y must divide z, which forces that min(z) <
min(y). Hence, max(g(w) < min(y).

Suppose max(g(w)) < min(y). Suppose the canonical decomposition of w is w = g(w).z, max(g(w)) <
min(z). Then wy = g(w).yz is the canonical decomposition of wy, since max(g(w)) < min(yz).
Therefore, g(wy) = g(w). O

Lemma 7.2.3. Let I be a stable monomial ideal with decomposition function g : M(I) — G(I).
Then, for any monomial a and any w € M(I),

(i) 9(ag(w)) = g(aw),

(11) max(g(aw)) < max(g(w)).

Proof. (i) Assume first that a = x;.

Case 1: If i > max(g(w)), then g(z;w) = g(w) by Lemma 7.2.2 and g(w).z; is itself a canonical
decomposition of g(w)z;, which implies that g(z;9(w)) = g(w).

Case 2: 1f i < max(g(w)), then g(z;w) = g(z;g(w)y) for some monomial y € S with max(g(w))
min(y). Note that max(z;g(w)) = max(g(w)) < min(y). Hence, by Lemma 7.2.2, g(z;w)
g(zig(w).

For an arbitrary monomial a, the proof follows by induction on the degree of a. For example,
g(zizjw) = g(zig(z;jw)) = g(ziz;g(w)).

(ii) As in (i), it suffices to prove the statement for a = x;, as the rest of the proof follows by
induction on degree.

If i > max(w), then g(z;w) = g(w) by Lemma 7.2.2.

If i < max(w), then

I IA

max(g(z;g(w))) < max(z;g(w)) < max(g(w)),
and since g(x;w) = g(x;g(w)) by (i), we have max(g(z;w)) < max(g(w)). O

Lemma 7.2.4. Let w € M(I) be a monomial in I and let a be a monomial in S. Then
gla.w) < g(w)

in the graded reverse lexicographic order.
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Proof. Again, it suffices to prove the statement for a = x;.
If max(g(w)) <4, then g(z;w) = g(w) by Lemma 7.2.2, and the statement follows trivially.
If max(g(w)) > 1, let

zig(w) = g(zig(w)).y = g(ziw).y
with max(g(z;w)) < min(y) be the canonical decomposition of x;g(w) (the second equality is by
Lemma 7.2.3).
We must have deg(y) > 0, since deg(y) = 0 would imply that g(x;w) € G(I) is a proper multiple
of g(w) € G(I). Hence, deg(g(z;w)) < deg(g(w)).
If deg(g(z;w)) < deg(g(w)), g(z;w) < g(w) in the graded reverse lexicographic order. If deg(g(z;w)) =
deg(g(w)), then deg(y) = 1, that is, y is a variable, say, z;.
Since i < max(g(w)), and max(g(z;w)) < j, it follows that j = max(g(w)). The equation z;g(w) =
g(z;w)x; forces that the exponent of z; in g(w) is strictly larger than the exponent of z; in g(z;w).
Since max(g(z;w)) < 7, g(z;w) < g(w) as desired. O

We now proceed to describe the minimal graded free resolution (L.(I),d) of an arbitrary stable
monomial ideal I C S.

Define a symbol e(iy, ..., i, u) to be admissible if the following three conditions are satisfied:
(i) u e G(I).
(ii) 41, ...,14, are integers such that 1 <4; < --- <i, < n.

(iii) i, < m = max(u).
In this definition, ¢ may be 0.
Let L, = Ly(I) be the free S-module on the set of all admissible symbols e(iy, . .., i4;u) for fixed
g > 0. In particular, Ly(I) is the free S-module with set of generators e(u) for u € G(I).
We define the map of S-modules
a LQ — 1

by a(e(u)) = u.
In order to define d : L, — L, 1 for ¢ > 1, we need some more notations as follows: Let

e(i1,...,iq;u) be an admissible symbol. Denote by ¢ the sequence (iy,...,%,). If o = (i1,...,14,),
we denote by o, the sequence o, = (i1, ... gy ,1q) in which ¢, has been deleted.

Let u, = g(x;,u) and y, = x; u/u,. Then, by definition, max(u,) < min(y,). We write m, =
max(u,) and denote by A(o;u) C {1,...,¢} the set of values of 7 for which max(iy, ..., 4, ...,i,) <

m,., or equivalently, the set of values of r for which e(o,;u,) is an admissible symbol.
The map d : Ly — Lg—1 is the S-module map determined by

q

de(oiu) = (=1)mielou) = Y (=1 gre(or; uy).

r=1 reA(o;u)

Remark 7.2.5. Observe that since z;, is not a minimal generator of I, it follows that deg(y,) > 1
and thus, d(L,) C (x1,...,Tn)Ly—1.
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The module L,(I) is endowed with a natural multigrading defined by
deg(z.e(i1,...,igu)) = 224 ... T, U,

for ¢ > 1 and deg(z.e(u)) = zu. Note that the maps d : L, — L,_1, as well as o : Ly — I, preserve
the multigrading.

Theorem 7.2.6. (L.(I),d) as described above is a minimal free graded resolution of I over S.
Proposition 7.2.7. (L.(I),d) as described above is a complez.

Proof. We first need to check that (L.(I),d) is a complex. To do so, we will exhibit (L.(I),d) as
the quotient of another complex.

Let C, be the free R-module on all symbols e(iy, . .., 4,) satisfying only the two conditions

(i) uw e G(I).

(ii) 41, ...,14, are integers such that 1 <i4; < --- < i, < n.

Define D : C; — C,_1 to be the R-module map determined by

q

De(o;u) = > (=1 ase(opu) = > (=1 yre(opu,),

r=1 r=1

where, as before, u, = g(x; u) and y, = x; u/u,.
To prove that (C,, D) is a complex, it is convenient to cut the operator D in two: Let D = Dy — D,

where
q

Die(oy) = Y (=1)"z;, (o),

r=1
q
D, = Z(—l)ryre(m;ur).
r=1
Let o = {i1,... i}, 0r = {i1, - sirs oo oyigy = {1,y Jgrtand oy g = 0y = {in, oo yipy ooy, - -
for r < s. Let v, = g(z;,u) and vy, = z; u/u, for s=1,..., ¢ — 1.

q

Di(e(osu)) = Y _(=1)"z;, Di(e(or;u))

=D (Vi Y (~Dage((on)sw) (7.4)
=3 () wze(o) ).

For k < t, the basis element e(oy;u) appears in two summands in the above summation: once
when r = k,s =t — 1 with coefficient (—1)*"~1z, z;, and once when r = t,s = k with coefficient
(—=1)**tx; z;,. Hence, D} = 0.
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»Q
—

q

) i, (—1) yse((on)ss uy) + Z (=1)"yr(=1)°zj.e((07)s; ur)-

=1 s=1

MQ
M

(Do Dy + D1 Do)(

g
I
—
»
I
—

(7.5)

For k < t, the basis element e(og;u,) appears in two summands in this summation: once when
r =k, s =1t— 1 with coefficient (—1)k*""1z, y; | = (—=1)*""1z; y, and once when r = t, s = k
with coefficient (—1)*"y,z; . Hence, DyD; + Dy Dy = 0.

Finally, in order to calculate D3(e(o;u)), let

Urs = g(2;,2;,0)

and let y,.s = x;, g(z;,u)/g(x;,x;,u). By Lemma 7.2.3(1), u.s = g(2;,.9(x;,)u) = g(x; g(x;, )u), and
thus

Die(o;u) = Z (=)™ y,ysre(0gr; tsr)
1<s<r<n

(7.6)
+ Y (D) e ).

1<r<s<n

Clearly, ¥,ysr = Ysyrs and hence, D3 = 0. Thus, D? = 0.

Let N, C C, be the submodule generated by the symbols e(iy,. .., i, u) with max(u) < i,. We
claim that N, is a subcomplex of C,, that is, D(N,) C N,_.

Indeed, if max(u) < i4, Lemma 7.2.2 forces u, = g(x;, u) = v and hence, y, = x;,. Hence, the
last term (—1)%y,e(0q;uq) in Dae(o;u) coincides with the last term (—1)%x; e(04;u) of Di(o;u).
It follows that if max(u) < i,, then

q—1 q—1
De(o;u) = > (=1 g e(onu) = > (=1 yre(on;ur).
r=1 r=1

Since, by Lemma 7.2.3(ii),
max(u,) = max(g(z;, )u) < max(g(u)) = max(u) < i,

and i, is the last index in o, for r =1,...,¢ — 1, it follows that De(o;u) € N,_.

Clearly, L, = C,/N, and the boundary operator d : L, — L, is induced by the boundary
operator D on C,. Hence, d* = 0. The vanishing of the composition « o d is easily verifiable by
direct computation. Hence, (L,(I),d) is a complex. O

In order to prove ker(d,) C Im(d,+1), we define a "normal form” to which every element of L,
may be reduced modulo Im(d,;) and show that ker(d,), respectively ker(a), contains no normal
element except 0.

Let B be the natural k-basis for L,, that is, B contains the elements z.e(o; u) where 2 is a monomial
in S and e(o;u) is an admissible symbol. Elements of B are called terms.
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Definition 7.2.8. A term z.e(iy, ..., i, u) will be called normal if z =1, or if min(z) > iy, when
g > 1, or min(z) > max(u) when g = 0.

An element f € L, is normal if it is a linear combination of normal terms. The element 0 is
normal.

Given two sequences o = (iy,...,%,), 0’ = (j1,...,Jq) of the same length ¢, define 0 < o’ if
T Tiy ... T, < Tj ...T; in the graded reverse lexicographic order. Given two terms z.e(co;u),
Z'.e(o’;u') in L, define z.e(o;u) < 2.e(o’;u’) if either u < v/, or u = v and 0 < o', or e(o;u) =
e(o’;u) and z < 2/.

Lemma 7.2.9. Let a = e(ig,...,i5u) be a term in Lyi1, ¢ > 0. Then x;,e(iy, ..., i, u) is the
biggest term in d(a).

Proof. Let o = (ig, i1, ..,1;). We have

q

de(osu) =) (1) Mz elonu) — D (=1 ye(onuy).

r=0 reA(o;u)

By Lemma 7.2.2, since i, < max(u) for all r = 0,...,¢q, g(x;u) # g(u) = u. By Lemma 7.2.4,
Uy = g(z;,)u < u. Thus all terms in the second sum are strictly smaller than x;,e(oo;u). Further,
since o, < ¢ for all r > 1, it follows that z;,e(0o;u) is indeed the biggest term in de(o;u). O

Lemma 7.2.10. Let b = ze(iq, . .., u) be a non-normal term in L,, ¢ > 0. Then b is congruent
modulo Im(d,41) to an element whose terms are all strictly smaller than b.

Proof. Let i = max(z). We have i < i; (respectively i < max(u) for ¢ = 0), since b is assumed to
be non-normal.

Consider the term a = (z/x;).e(i,i1,...,i5u) € Lypr. By Lemma 7.2.9, b is the biggest term in
d(a) (and has coefficient -1). Thus, all terms in b+ d(a) are strictly smaller than b. O

Proposition 7.2.11. Any element in L,, ¢ > 0, is congruent to some normal element modulo
Im(dg1).

Proof. Let f € L,. Suppose f is non-normal. By Lemma 7.2.10, we can replace any non-normal
term in f by a combination of strictly smaller terms, not changing the class of f modulo Im(d,41).
When iterated, this process must end up with a normal element in finitely many steps because d
preserves the multigrading, and there are only finitely many terms with a given multidegree. [J

Lemma 7.2.12. Let b be a normal term in Ly, ¢ > 0. Let V' be any term in L, and assume that
the biggest term in d(b) actually appears among the terms in d(b'). Then b <b'.

Proof. Assume first ¢ = 0. Then b and b’ have the form b = y.e(u), b’ = z.e(v). Since a(b) = uy,
a(b') = vz, the hypotheses amount to uy = vz and max(u) < min(y), by normality of b. Thus,
w.y is the canonical decomposition of vz, and so u = g(vz). By Lemma 7.2.4, we conclude u =
g(vz) < g(v) =v,and so b < V.
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Assume now ¢ > 1. Let b = y.e(iy,...,igu), V' = ze(ji,...,juv). By hypothesis, ¢ =
ziye(ia, . .., 1g;u), the biggest term in d(b) according to Lemma 7.2.4, appears as a term in d(b').
If it appears as a term of the second kind, that is,

$z‘1y€(i2, s 72.11; U) = ZTze(jlv s 757"7 s ajq; g(xjrv))a

where 2, = z; v/g(x;v), then u = g(x; v) < g(v) = v by Lemma 7.2.4, and so b < V'.
If ¢ is equal to a term in d(¥') of the first kind, that is,

xiye(iz, ..., g u) = xj ze(ji, . . . ,j’r; v),

then u = v. We compare the sequences: if r > 1, then we have iy, = j, for r +1 < s < ¢ and
iy = jr—1 < jr. Hence, (i1,...,1,) < (J1,...,Jq) and b < V.

If » = 1, we have (ig,...,%,) = (j2,...,J,) and z;,y = xj,2z. By normality of b, we have i; =
min(z;,y) = min(z;, 2). Hence, i; < j;. If 4; = j;, this implies b = b'. If iy < jy, then (iy,...,4,) <
(J1,---,Jq) and b < V. O

Proposition 7.2.13. Let f be a non-zero normal element in L,, ¢ > 0. Then d(f), respectively
a(f), is non-zero.

Proof. Let b be the biggest term in f and ¢ the biggest term in d(b), respectively «/(b). By Lemma
7.2.12, ¢ cannot cancel against any other term in d(f), respectively «(f). Hence d(f), respectively
a(f), is non-zero. O

This finishes the proof of Theorem 7.2.6.
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